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ABSTRACT 
 
This paper presents a Multilayer Neural Network 
controller for real time control applications. A model 
reference structure is developed and a neural network 
is used as a compensator in the closed loop system. 
This scheme can be used in the control of nonlinear 
systems and/or as an adaptive controller if desired.  
 

I. INTRODUCTION 
 
In the industrial processes there are many systems having 
nonlinear properties. Moreover, these properties are often 
unknown and time varying. The commonly used 
Proportional-Integral-Derivative (PID) controllers are 
simple to be realized, but they suffer from poor 
performance if there are uncertainties and nonlinearities. 
The neural network controllers have emerged as a tool 
for difficult control problems of unknown nonlinear 
systems. Neural networks (NN) are used for modeling 
and control of complex physical systems because of their 
ability to handle complex input-output mapping without 
detailed analytical models of the systems. Since 
Multilayer Neural Networks (MNN) can approximate 
arbitrary nonlinear mapping through a learning 
mechanism, they can compensate the nonlinearities. 
 
There are several control strategies for neural networks 
which some of them are as: 1) Feedforward control, 2) 
Direct inverse control (extracting inverse dynamics), 3) 
Indirect adaptive control method based on NN 
identification, 4) direct adaptive control with guarantied 
stability, 5) Feedback linearization, 6) Predictive control 
[1,2]. In the direct inverse control method, a MNN is 
trained by specialized back-propagation algorithm [2]. 
This method has attracted much attention in recent years 
because it is intuitive, and simple to be implemented 
[3,4,5]. However, the plant to be controlled may not have 
a unique or stable inverse, which is the drawback of 
direct inverse dynamics method. Besides, if all the poles 
and zeros of the system to be controlled are negative, 
direct inverse controller performs well. But the control 

will not be successful if any pole or zero of the system is 
positive.  
 
In this study, a control strategy is proposed for the real 
time control of single-input single-output linear and 
nonlinear systems. At first glance, the proposed method 
resembles previous two methods mentioned before: 
model reference direct inverse control and indirect 
adaptive control. The proposed method uses specialized 
back-propagation training algorithm and is desired to 
track a reference model. The method can be considered as 
a direct controller design. Although it does not require 
any knowledge of the system dynamics, it requires the 
sensitivity of the controlled system. The proposed method 
can control systems which has nonnegative poles. 
However it cannot control systems having nonnegative 
zeros. In addition, it needs faster computing for 
stabilization comparing to direct inverse method.  
 

II. THE NEURAL NETWORK CONTROLLER 
STRUCTURE AND SYSTEM IDENTIFICATION 

USING NEURAL NETWORK 
 
In using neural networks for system identification, 
training data can be obtained by observing the input-
output behavior of a plant. If previous values of the 

  
input and output are present, the future value can be 
predicted as 
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Figure 1. System Identification by TDNN
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which is called as “one step ahead prediction”. Equation 
(1) can be easily implemented as shown in figure 1 [6,7]. 
Previous values of the input and output held by time 
delay elements give dynamic behavior to the network. 
This structure is called as time delayed neural network 
(TDNN). In this paper, all controller and identifier NNs 
in the systems are time delayed neural networks. 
Therefore, the proposed NN controller has the same 
structure as shown in figure 1. 
 

III. DIRECT MODEL REFERENCE ADAPTIVE 
NN CONTROLLER 

 
The proposed method can be used as adaptive or non-
adaptive controller. If learning process continues, the 
controller will be an adaptive controller. In non-adaptive 
case, learning process is executed as offline or for a 
certain period of time. Figure 2 shows the usage of NN 
controller after completing the training for the non-
adaptive case.  
This structure is different from the direct inverse 
dynamics control structure in which error is directly the 
input of structure. The objective is to train the neural 
network in such a way that to obtain a controller to 
control the plant (figure 2). 
 

  
To achieve this, the neural network should be trained in 
such a way that for the input of error, e(t) produces 
proper control parameter, u(t) to be applied to the plant to 
produce y(t). In standard back-propagation algorithm, 
both  u(t) and y(t) are required for training the network. 
Therefore, a special learning algorithm is required.  
 
Let there is a reference model having input of )(tr  and 
desired output signal of )(td . The error between the 
output of the controlled system, y(t) and the reference 
model output can be defined as  
 
 )()()( tytdtec −=    (2) 
 
The objective is to obtain an output signal from the 
system shown in figure 2 as close as possible to the 
output of the reference model by reducing the square of 
the error. Therefore the cost function is defined as 
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For the output layer of the network, which has one 
neuron, the training rule for specialized back-propagation 
can be written as  

 

     iw∆ = E
wi∂
∂

−η     (4) 

 
where 
 

     
ii w

net
net

tu
tu

E
w
E

∂
∂

∂
∂

∂
∂

=
∂
∂ )(

)(
   (5) 

 
In this equation ∑=

k
kk wxnet  is the sum of weighted 

input signal of the activation function, kx  is the kth input, 

kw  is the kth weight of the output neuron. The right side 
terms of  Equation (5) can be shown as the following 
equations. 
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()a′  is the derivative of the activation function of the 

output neuron. Thus,  
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The updating rule for the output layer is obtained. In 
equation (7), )()( tytd −  is the error between the 
controlled system and reference system. Error term 
between the output of the system and the reference signal 

)(te is implicit to this equation, because )(te  is the input 
of NN and calculations performed on it at the hidden 
layer.  
 
Hidden neurons have the same updating rule as in 
standard back-propagation [8]. The only difference 
between equation (7) and standard back-propagation is 
the term  )(/)( tuty ∂∂ , which is the sensitivity of the 
controlled system. This term may not be obtained directly 
from the controlled system itself accurately since it is 
time independent. One way to obtain the sensitivity term 
is to identify the controlled system by a neural network, 
because the identified model provides the stationary 
properties of the system. If the controlled system is linear, 
its sensitivity is a constant value. Since learning rate of 

 
Figure 2. MNN used as a controller (Plant : controlled  

system). 



NN included in equation (7) is an arbitrary or adjustable 
constant, two constant parameters can be considered as 
one constant parameter, therefore identification is not 
required for linear systems. 
  
The proposed training structure is shown in figure 3. 
Note that the error signal )(te  is the only input of the 
neural network controller. This feature makes the 
controller different from the direct inverse dynamics 
control and also renders to control nonzero pole systems 
successfully. 
 

  
The structure given above can be used to train the 
controller network. In addition, if the training process 
continues, the proposed structure becomes a model 
reference adaptive controller.  
 
IV. SPEED CONTROL OF A DC MOTOR BY PWM 

TECHNIQUE 
 
A separately excited motor is required to be controlled to 
track the speed command in one direction by pulse width 
modulation technique. The controlled system is shown in 
figure (4). 
 

  
Speed of the motor is controlled by controlling power 
delivered to the motor, while keeping the field voltage 
and field current of the motor constant. The chopper is 
used to control the armature voltage of the motor. Power 
is delivered to the system from a constant voltage source 

sV . The circuit has a power transistor and a power diode 
called as “freewheeling diode”. During the on state of 
transistor, power is delivered to motor. When the 
transistor is off, armature current of the motor continues 
to flow on freewheeling diode. To vary the power applied 
to the motor a square wave signal is applied to the 
transistor gate. The applied signal has constant frequency 

but variable on-off durations in each period. The speed of 
the motor is controlled by varying the duty cycle d  of 
the transistor. The corresponding waveforms are given in 
figure 5.  
 

  
For a lossless converter the power delivered to the system 
is proportional with the duty cycle as  
 

aa IdVP =     (8)  
 
where aV  and aI  are armature voltage and current of the 
motor. The average value of the armature current is as 
follows: 
 
 as dII =     (9) 
 
The equivalent input resistance of the chopper converter 
seen from the source side is as:  
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The maximum peak-to-peak current ripple is 
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where f is the sampling frequency [9].  
 
The aim is to find a proper value for duty cycle to make 
motor tracks the desired speed. Neural Network 
Controller extracts the desired duty cycle signal during its 
learning.  
 

V. SIMULATION RESULTS 
 
Simulation programs are written in C++ language. In this 
study, 110 V, 2.5 hp, 1800 rpm separately excited DC 
motor having the following parameters are used: aR = 1 

Ω, aL  = 46 mH, J = 0.093 kgm2, B = 0.008 Nt-m/rad/s, 

Figure 3. Model reference adaptive neural network  
controller 

Figure 4. PWM Controlled DC Motor  

Figure 5. Voltage and current waveforms of the system



vK  = 0.55 V/rad/s. The other parameters used in the 
simulation are as follows: Amplitude of PWM armature 
voltage 200V (i.e., V=200V), reference speed during 
training process rw  = 100 rad/s, load torque 

NmTL 10= . The chopping frequency of the transistor 
is 1kHz.  
 
Figure 6 shows some of the uncontrolled dc motor 
variables operated at duty-cycle of 0.5.  
 

  
The diagram of neural network used in the control of DC 
motor is shown in figure 7. The time delay neural 
network is a multilayer neural network and has two 
inputs. The MNN has two hidden layers, which consist of 
10 neurons. The output layer of the NN has only one 
neuron. Since the motor model is linear, identification is 
not required.  
 

 
 
The network is trained for 250 second applying a 0.1 Hz 
square wave to the reference model. The load was 10 Nm 
during training. First the training was completed then off 
line performance of the controller was tested for different 
waveforms of reference signal and different load 
conditions. The step pulse response at 10 Nm load is 
given in figure 8. The responses of the motor to a 
sinusoidal input signal are given in figures 9 and 10 for 
two different load torques which are zero and 15 Nm. 
The responses of the motor to a triangular input signal 
are given in figures 11 and 12 for the same load 
conditions as figures 9 and 10. To represent on the same 
scale, the controller outputs –duty cycles- for each 
condition shown in figure 8-12 are multiplied by 20. 
 

 
 

 
 

 

 
 
 

 
 

Figure 7. Control Schema of DC Motor 

Figure 8. 100 rad/s step response of DC Motor at Load  
10 Nm

Figure 6. Input   voltage, speed   and   armature current of    
           Motor. Armature current has been multiplied by 30  

   Figure 9. Sinusoidal waveform response of DC Motor at  
no load

 Figure 10. Sinusoidal waveform response of DC Motor at  
load 15 Nm 

Figure 11. Triangular waveform response of DC Motor at  
no load 



 
 
 

VI. CONCLUSIONS 
 
This paper presents an NN compensator to make motor 
tracks the desired speed. The controller consists of a 
multilayer perceptron and time delay elements. The 
specialized back-propagation algorithm was used for the 
NN controller. Simulation results show how well the 
control method performs. 
 
In addition, this control method can be used as an 
adaptive controller if training mode of the neural network 
continues. The proposed controller will perform well if 
sampling rate of training (or weight updating frequency 
of) is high enough and the zeros of the system are 
nonnegative.  
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Fig 12. Triangular waveform response of dc motor at load  
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