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Abstract

In this study, an application with electrical load forecasting -
an important topic in the electrical industry - has been
carried out by a machine learning method which has
recently become popular: Support Vector Machines (SVM).
Load forecasting with SVM can model the nonlinear
relations with the factors that affect the load in addition to
the accurate modelling of the load curve at the weekends
and on important calendar days. The data gathered from the
Istanbul European Side are used as a sample for the
application. In addition to the past load data, daily average
temperature, calendar days, holidays and electricity price
are considered as an attribute in forecasting. The
programme LibSVM is used for modelling the system. It is
noted that SVM gave satisfactory results.

1. Introduction

In the power industry, the first step towards making the right
decisions is an accurate load forecasting. The electricity demand
should be known in order to make profitable investments, build
efficient systems, increase the capability of existing systems,
schedule energy distribution, etc.

During forecasting, an underestimation in energy demand
may result in limited supply of electricity at the consumer end,
which leads to energy quality reduction in system reliability. On
the other hand, an overestimation may cause unnecessary
investments or establishments which run under-capacity and
therefore result in uneconomic operating conditions.

Studies about accurate load forecasting gained importance in
the late 1960s. However since then, the main focus in load
forecasting has been on short term load forecasting field since it
is an important tool in the daily operation of utility systems.
More recently, with the deregulation of energy markets, more
and more attention has also been paid to load forecasts with
longer prediction ranges, such as medium-term load forecasts.
Medium-term load forecasts are used in scheduling maintenance
and fuel supply, as well as in small infrastructure changes. Also,
as indicated in [1], medium-term load forecasts enable
companies to estimate the load demand for a longer time
interval which, for example, helps them in the negotiation of
contracts with other companies. Especially in deregulated
markets, any deviation from the actual load demand may lead to
significant economic costs. Therefore, it is important to make
accurate forecasts in order to avoid these issues.

As some of the published survey papers [2-7] indicate, the
electrical load forecasting is a quite popular research area. There
are two main approaches in this field: the traditional statistical
approaches that model the relation between the load and the
factors that affect the load (such as time series and regression
analysis, etc.) and artificial and computational intelligence
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approaches. Statistical methods assume the load data follow a
pattern and try to forecast the value of the future load by
employing different time series analysis techniques. Intelligent
systems are derived from the mathematical expressions of
human behaviours/ experiences. Especially since the early
1990s, Neural Networks has been considered as one of the most
commonly used techniques in the electrical load forecasting
field, as it assumes there is a nonlinear function that relates past
values and some external variables to future values that may
affect the output [2]. The approximation capability of Neural
Networks has made it convenient for common usage. As stated
in [8], a software based on the Artificial Neural Networks
method was used by several electric utilities in the US and
Canada for hourly short-term load forecasting.

In recent years, one computational intelligence method
involving Support Vector Machines has become commonly used
in the electrical load forecasting field. For instance, Chen et al.
[9] used a Support Vector Regression technique to solve an
electrical load forecasting problem, which was a competition
organized by EUNITE network (European Network on
Intelligent Technologies for Smart Adaptive Systems). Their
approach in fact won the competition. In addition to that,
Mohandes [10] used the Support Vector Regression model for
short term electrical load forecasting and compared the results
with the autoregressive (AR) model. As a result, the
performance of the SVMs was much lower than the AR method.
The researches [11-12] showed that, with its superior
generalization capability, Support Vector Machines are
successful in forecasting applications.

In this study, Support Vector Machines are used for the
daily peak load forecasting of a monthly period. The main
reason for using SVM in solving a medium-term load
forecasting problem is that it can easily model the load curve;
the relation between the load and the dynamics which change
the load demand, such as calendar days, special days (holidays,
festive, etc.), temperature, economic and demographic factors.

In this study, the real electrical load values, temperature and
electricity price, as an economic factor, between 2006 and 2009,
are used to predict April 2010 daily peak load values using
SVM.

2. Support Vector Machines

SVM is a powerful technique used in solving main learning
problems. It is derived from the Statistical Learning Theory of
the 1990s. Basically, it was first used in pattern recognition and
classification problems, but it is modified to be used in
regression problems.

Generally speaking, for learning problems in the case of
regression, training data is given to the learner in order to find
out the relation (correlation, mapping or function) between
inputs and outputs of a function f(x). Training set;



D={[xy]€R" xRi=1,.,1} (1)

consists of input vectors x, X€ER", and outputs y, yER, which
constructs (xl, yl), (XZ, yz), <, (X1, ;) pairs.

The main idea of the support vector machines in regression
is that the inputs x; needs to be mapped into a higher
dimensional feature space with the function ¢ [13].

d(x): R > R
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After the inputs are mapped into higher dimensional space,
the problem converts from a nonlinear regression case into a
linear regression case, which enables the quadratic programming
formulation of the problem. The SVM considers approximating
functions, in this case regression hyperplane, of the form [14];

©)

¢ (x) mapping function is an advanced defined function. In
formulation, parameters w and b can be found by minimizing
expression of the error function R[14];

fw) =wTp(x) +b
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Here, ||w||? is the norm of the weight vector that defines the
capacity of the model for an optimum generalization. The term
g, represents the Vapnik’s e-insensitive loss function which
defines the € —zone as shown in Fig. 1. If the forecasted value is
within the tube, the approximation error will equal zero. For all
other values that lie outside of the tube, the loss is equal to the
distance between the data point and the radius of the e&-
insensitive tube.

Fig. 1. A Simple Example of Support Vector Regression

The penalty parameter C determines the trade-off between
an approximation error and the weights vector norm. An
increase in C penalizes larger errors (large ¢ and £*) and in this
way leads to a decrease in approximation error. However, this
can be achieved only by increasing the weights vector norm. At
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the same time an increase in ||w|| does not guarantee good
generalization performance of a model [14].

As can be seen from the Fig. 1, the training data points that
lie outside of the e-insensitive tube can be written as [14];

ly — f(x,w)| — € = & for the points above the tube
ly — f(x,w)| — & = & for the points below the tube

where & and & are slack variables which are positive values.
Substituting the equations above into the R [14];
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The parameters of the optimal hyperplane f(x,w) can be found
with the help of Lagrangian multipliers;
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Here, assigning K(xi,xj) = o(x))d(x;) is known as the
Kernel Trick. These predefined kernel function make the
calculations easier as they avoid the high dimensionality of the
feature space.

By maximizing the dual Lagrangian, optimal hyperplane can
be obtained. To achieve this Karush-Kuhn-Tucker (KKT)
conditions for regression are applied [14];

Maximize Ly(a,a’) = —eXl_i(a; +ai) +
Yia(a; — a)y;

1 (10)
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(11

l
Z(ai—a;‘) =0
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The parameter b can be found by using the Karush-Kuhn
Tucker complementarity conditions [15].



The performance of the regression depends on the
parameters the cost of the error C, the width of the tube ¢ and
the chosen kernel function.

Support vector regression can come up with a more
generalized solution to the problem than the traditional
regression approach by mapping the data into a higher
dimensional feature space and setting a width (g) for the tube.

In this electrical load forecasting study, the programme
LibSVM is used for SVM modelling.

3. Data Sets

The relation between load demand and time, meteorological
conditions, economic-demographic and random factors are vital
for an accurate prediction of an electrical load demand. These
factors should be taken into account when determining the data
that will be used in load forecasting.

In this study, the data set, which is used in the forecasting
process, consists of daily past peak electrical load values, daily
average temperature values, calendar days to determine whether
it is a weekday/weekend/ holiday and electricity price to project
the economic course.

3. 1. Electrical Data

Past daily peak electrical load values gathered from the
Istanbul European Side between the years 2006 and 2009 are
used in this study. Daily load demand curve is given in Fig.2.

The Istanbul European Side contains both industrial and
residential areas. As a result, there is a small difference in
respect to electrical load demand between weekdays and
weekends (or holidays, special days, etc.). Nevertheless, load
demand on Saturdays and Sundays are slightly less than it on
weekdays. Fig. 3 clearly shows this distinction.
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Fig 3. Sample Load Curve from April 2006
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3.2. Temperature Values

Temperature is one of the most important factors influencing
load demand. Thus, it is included to the data set of this study.

In Fig. 4, the daily average temperature curve between 2006
and 2009 is shown.
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Fig. 4. Daily Average Temperature between the years 2006-
2009

It can be observed that the seasonal effect of the temperature
is influential on the electrical load demand by comparing Fig. 2
and Fig. 4.

3.3. Calendar Days

Previous studies show that weekends, holidays, special days,
such as religious holidays etc. have generally lower load
demand than normal days. Thus, these days are considered as a
feature in the data set as they may affect the forecasting process.

3.4. Economical Factors

Especially in mid and long term forecasting applications, it
is important to consider economic and demographic factors as
well as past load values. In this study, electricity price is
regarded as an economical factor. Table 1 shows the course of
the electricity price in TL/ kWh over April, May and June 2006
through 2010.

Table 1. Electricity Price of Istanbul

Years* Electricity (TL/kWh)
2006 0.16
2007 0.16
2008 0.19
2009 0.25
2010 0.27

* Only April-May-June
4. Implementation

The SVM training set is constructed from seventeen inputs
using past load values, temperature values, calendar days that
indicate weekdays/weekends/holidays and electricity price as
follows;

e  Seven inputs to project the values of electrical loads of
the past seven days



e  Seven inputs that indicate the day

e  One input that indicates whether it is a holiday or not
e One input for the average daily temperature

e One input for the electricity price

The reason for choosing the interval “past seven days” is
that the electrical load input accurately projects the periodicity
of the load demand. After the related day is predicted, the
resulting load is added to the next day’s past seven loads and the
data set is prepared accordingly. For instance, when predicting
April 1, the load values of March 25 through 31 are taken as
past load values and a value for April 1 is obtained. Similarly,
the value of April 1 is used in the past load values of April 2 and
the prediction is repeated until the April 30’s load values is
found.

The data set includes the load values, temperature values,
calendar days and electricity price of April-May and June of the
years 2006 through 2009. Thus, the SVM data set is made of the
patterns which have the most similar characteristics to the month
to be predicted.

The established model has a single output, which is the
predicted load. Here, scaling of the input variables is one of the
key points of building the SVM model. Scaling of the inputs is
achieved by the in-built scaling tool of the programme LibSVM.
Therefore, all the inputs are scaled in a range of [0 1].

The predicted electrical load values of April 2010 are
compared to the real values of this month. In order to measure
the difference as an error metric, Mean Absolute Percentage
Error (MAPE) is used.

MAPE = —
T
t=1

T o~
100 ‘Yi _Y1|
Vi

(12)

In the formula above y; represents the real value whereas
¥, represents the predicted value [3]. The value T corresponds to
the total number of values, in our case this is the total number of
predicted days.

5. Results

In SVM modelling, the values of the cost of the error C, the
width of the tube & and mapping function ¢ must be defined.
The value of ¢ -insensitive tube width is defined as 0.5. Radial
Basis Function — RBF, one of the most common mapping
functions, is chosen as the kernel function. [13-14]

2
K(xi,xj) = ¢)(xi)T¢(xj) = e_y”xi_xj” (13)
When building the SVM model, 75% of the data is used as
training data while the remaining 25% is used for testing data. y
kernel parameter in function (13) and the cost of the error C in
regression function is determined using the cross-validation tool
in LibSVM. In cross-validation, the training data is divided into
random subsets of requested sizes (2.5, 5, 10, etc.) Each subset
is used as a test set while the rest of the data is used as a training
set. The C ve y values of the best results of the 5-fold cross
validation tests are used to train the training data.
The comparison of the estimated and real values for April,
2010 can be seen in Fig. 5.
The error percentage between the values estimated by SVM
training and real values is;

MAPE= % 3.67
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Despite the Istanbul European Side’s dynamic nature, the
SVM achieved a good performance by simply using past load
values, average daily temperature and electricity price as an
economic factor, especially in respect to projecting the
periodicity of the load demand curve.
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Fig. 5. The comparison of the estimated and real values for
April, 2010

6. Conclusion

In this study, the maximum daily load for the Istanbul
European Side of April 2010 is estimated with Support Vector
Machines using the real maximum daily load, temperature and
holiday period values from 2006 to 2009. For this purpose, the
programme LibSVM is used. Radial Basis Function, which is
one of the most commonly used kernel functions in nonlinear
estimation problems, is used in the mapping of input values into
higher dimensional feature space. The cost of the error C in
regression problem and the y parameter in the radial basis
function is determined using a S5-fold cross validation. The
obtained values are used for training the training data and
estimating the peak daily load for April 2010. The reliability of
established models using SVM is tested using the real values.

The predicted values are clearly projected by the periodicity
of the load demand course, which is decreasing during the
weekends and increasing during the weekdays. It can be said
that when compared to the previous studies on the same field,
even with the special days or holidays included in the data set,
SVM is showing much more promise as it offers an optimal
solution independent from the model, with lesser independent
variables and ease of calculations. The fact that variables are
determined using trial and error methods and the time
consuming nature of model building process are two
disadvantages of SVM.

To decrease the error percentage results estimated using
SVM training, values of the cost of the error C, € -insensitive
tube width, the type of kernel and the parameters inside the
kernel functions must be chosen very diligently. In addition to
all these factors, as the size and the consistency of the training
set reflects directly on the estimated numbers, determination of
these values is of great importance.
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