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ABSTRACT
In this study, we use the simulated annealing technique to
synthesise the pattern of a linear antenna array with the
prescribed nulls. Forming nulls in the pattern is achieved by
controlling only the amplitude of each array element. To
show the versatility of the present technique, some design
specifications such as the sidelobe level and the null depth
are considered by introducing a set of weighting factors in
the cost function constructed for the simulated annealing.
Several examples of Chebyshev pattern with the imposed
single, multiple and broad nulls are given to show the
versatility of the present method.

I. INTRODUCTION
Due to increasing pollution of the electromagnetic
environment, methods for forming nulls in the radiation
pattern of an antenna have been extensively proposed in
recent years in order to suppress unwanted interfering
signals [1-15]. These methods become very important in
radar, sonar and communication systems for minimising
degradation in signal-to-noise ratio performance due to
undesired interference. There has also been considerable
interest in synthesising array patterns with broad nulls
[12-15]. The broad nulls are needed when the direction of
arrival of the unwanted interference may vary slightly
with time or may not known exactly, and where a
comparatively sharp null would require continuous
steering for obtaining a reasonable value for the signal-to-
noise ratio.

In general, array pattern nulling methods  are based on
appropriate selection of array parameters such as the
complex weights (both the amplitude and the phase), the
phase-only, the position only and the amplitude-only of
the array elements, so that the main beam remains
pointing towards the desired signal, while the nulls are
formed in the directions of undesired sources. Interference
suppression with the complex weights is the most
efficient because it has greater degrees of freedom for the
solution space. However, it is also the most expensive

considering the cost of the both phase shifter and variable
attenuator for each array element [3, 10, 15]. The phase-
only null synthesising is attractive since in a phased array
the required controls are available at no extra cost,
however, the problem for phase-only and element position
only array nulling techniques is inherently nonlinear and
can not be solved directly by an analytical method. By
assuming that the phase perturbations are small, the
nulling equations can be linearized [2], but it makes
impossible to place nulls at symmetric location with
respect to the main beam. In order to steer the nulls
symmetrically with respect to the mainbeam, the methods
based on nonlinear optimisation techniques [7, 8] have
been proposed, however, the resultant patterns of these
methods have considerable pattern distortion because the
phase perturbations used are large. Another phase-only
synthesising approach to steer array nulls at symmetric
directions is presented by Ismail and Mismar [11]. But it
uses a dual phase shifter for each array element, hence the
number of phase shifters to be used is 4N for an array
with 2N elements.

It can be achieved to place the nulls at symmetric
direction with respect to the main beam by perturbing the
element positions, however, it requires a mechanical
driving system such as servomotors to place the desired
locations of the array elements [8, 9].

The methods of amplitude-only control utilize an array of
attenuators to adjust the element amplitudes [4-6]. If the
array elements possess even symmetry about the center of
the array, both the number of attenuators required and the
computational time are halved. Amplitude-only control is
also easy to implement and less sensitive to quantatization
error [5]. For this reason, in this work, the pattern of a
linear antenna array with the prescribed nulls is
synthesised with the use of simulated annealing (SA)
technique by controlling only the element amplitudes.
Simulated annealing [16, 17] is a global optimisation



L:=GetInitialSolution()
T:=WarmingUp()
repeat

repeat
L1:=Neighbor(L)
∆C:=Obj(L1) - Obj(L)
if    ∆C < 0  or Accept (∆C, T)
L:=L1

until Equilibrium()
T:=DecrementT()
until Frozen()

technique which is based on the analogy between the
annealing of the solids and the problem of solving
combinatorial optimisation problems. Unlike many
discrete optimisation methods, SA does not exploit any
special structure that exists in the objective function.
However, SA is relatively more effective when a problem
is highly complex without any special structure. Thus, SA
can be quite useful in solving the complex optimisation
problems [16]. A major disadvantage of SA is that it
requires much computation (with many function
evaluations and tests for solution feasibility), however, it
has great potential for yielding an optimal or near-optimal
solution.

II. FORMULATION
If the array element amplitudes are symmetrical about the
center of the linear array, the far field array factor of this
array with an even number (2N) of uniformly spaced
isotropic elements can be written as:
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where dk is the distance between position of the kth

element and the array center and ak is the amplitude of the
kth element. In this particular problem of null
synthesising, we restricted ourselves to found an
appropriate set of element amplitudes (ak) to place array
nulls at any prescribed directions. In the optimisation
process, the relative importance between the null depth
level and the sidelobe level is also considered by
including the weighting factors w1, w2 and w3 in the cost
function given below.

do3

do2do1

MSLLMSLLw

NLDLNLDLw)(F)(FwC

−+

−+θ−θ=
(2)

where Fo(θ), Fd(θ), NLDLo,  NLDLd, MSSLo and MSSLd
are, respectively, the pattern of the SA, the desired
pattern, the null depth level of the SA, the desired null
depth level, maximum sidelobe level of the SA and the
desired maximum sidelobe level. To obtain the desired
pattern with the prescribed nulls, the cost function given
in eq.(2) will be minimised by the SA, which is briefly
described in the following section.

III. SIMULATED ANNEALING
Simulated annealing (SA) is a heuristic algorithm for
solving combinatorial optimisation problems. It is based
on a local search procedure, and can be viewed as a
control strategy for the underlying heuristic search. SA
has been shown to be a powerful stochastic search method
applicable to a wide range of problems [16, 17].

The basic idea in SA is to track a path in the feasible
solution space of the given optimisation problem. Starting
with a valid solution, SA repeatedly generates succeeding
solutions using the local search procedure. Some of them

are accepted and some will be rejected, according to
predefined acceptance rule. The acceptance rule is
motivated by an analogy with annealing processes in
metallurgy. In the beginning of the optimisation process
the main control  parameter- the temperature - is high and
decreases until no improvement of the current solution is
attainable. Starting with an arbitrary solution, every
improvement is accepted. Deteriorations of the objective
function are accepted according to the Boltzmann
probability e-∆C/T. An outline of the basic SA algorithm is
given in Figure 1.

Figure 1. Basic simulated annealing algorithm.

After some iterations of the local search procedure, the
temperature is decreased and the optimisation continues
on a new temperature level. The best solution found
during the optimisation is the output of the algorithm after
the system is frozen, i.e. no improvements can be found.

IV. NUMERICAL RESULTS
In order to show the effectiveness of the SA for steering
the single, multiple and broad-band nulls to imposed
directions by the amplitude-only control, five examples of
a linear array with one-half wavelength spaced 20
isotropic elements have been performed. Initially, a 30-dB
Chebyshev array pattern given in Figure 2, which has 20
equispaced elements with λ/2 interelement spacing, is
considered. In the optimisation process, The temperature
decreasing factor, the number of temperature points and
the initial population are fixed to 0.89, 15 and 100,
respectively. This was sufficient to obtain satisfactory
patterns with desired nulling performance on the average.
The all calculations took almost 4 min on a personal
computer with a Pentium III processor running at 750
MHz.

As the first example, the Chebyshev pattern with a single
null imposed at 15o is considered. The pattern is then
obtained by the SA and illustrated in Figure 3.

In order to show the effects of the weighting factors given
in eq. (2) on the pattern, the weighting value of the MSLL
(w3) is increased for the second example while the other
design parameters are the same as those of the first
example. The corresponding pattern is shown in Figure 4.
As a result of this change, the maximum sidelobe and null
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Figure 2. The initial 30-dB Chebyshev pattern.
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Figure 3. Radiation pattern with one imposed null at 15o.

depth levels of Figures 4 are achieved as -29.5 dB and
94.7 dB while those of Figure 3 are achieved as -28.5 and
117.6, respectively. These results apparently confirm that
the trade-off of the relative importance between the
maximum sidelobe level and the null depth can easily be
obtained by changing the weighting factors.

In the fourth example, the pattern with a broad null sector
centered 25o with ∆θ=5o is obtained. The resultant pattern
is shown in Figure 5. The desired broad null sector is
achieved with a null depth level of 60 dB over the spatial
region of interest.

In Figures 6 and 7, we have shown the nulling patterns
with double nulls imposed at 15o and 32o, and with triple
nulls imposed at 15o, 32o and 48o. As can be seen from
Figures 5 and 6 that all the desired nulls are deeper than
90 dB.

θ (degree)

-80 -60 -40 -20 0 20 40 60 80

IF
(θ

)I 
 (d

B)

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

Figure 4. Radiation pattern with one imposed null at 15o

and the constrained maximum sidelobe level.
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Figure 5. Radiation pattern with a wide-band null sector
centered 25o with ∆θ = 5o.

The element amplitudes obtained by the SA for Figures 3-
7 have even symmetry about the center of the array and
are listed in Table 1. It is seen from Table 1 that if the
number of imposed nulls are increased, the maximum
amplitude perturbation values become larger accordingly,
because increasing the number of imposed nulls requires a
larger degree of freedom for the solution space.

It is clear that the patterns in Figures 2-7 are symmetric
with respect to the main beam. This is a consequence of
the even-symmetry of the element amplitudes around the
array center, results in a pattern that is symmetric about
the maim beam peak at 0o. It should be also noted that
since the element amplitudes have even-symmetry about
the center of the array, the number of attenuators to be
used is N for an array of 2N elements.
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Figure 6. Radiation pattern with double imposed null at
15o and 32o.
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Figure 7. Radiation pattern with tripple imposed null at
15o, 32o and 48o.

Table 1. The element amplitudes (ak) for Figures 2-7.

Index
Element amplitudes

of the initial
Chebyhsev array

Element amplitudes computed with the SA

k Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7
±1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
±2 0.97010 0.97120 0.97210 0.94540 0.94600 0.87940
±3 0.91243 0.95913 0.93783 0.87673 0.92383 0.97503
±4 0.83102 0.87592 0.86452 0.77412 0.91352 0.87542
±5 0.73147 0.75867 0.74857 0.71377 0.75897 0.70457
±6 0.62034 0.64734 0.61454 0.57354 0.56594 0.57374
±7 0.50461 0.49651 0.44901 0.57761 0.48421 0.43721
±8 0.39104 0.34294 0.33154 0.39414 0.36854 0.36294
±9 0.28558 0.22548 0.22488 0.18578 0.21978 0.21868
±10 0.32561 0.29171 0.29181 0.22751 0.25901 0.22661

It is evident from the Figures 3-7 that this technique is
capable of determining the element amplitudes for the
array pattern with the single, multiple and broad nulls
imposed at the directions of interference while the main
beam and the sidelobes are quite close to the initial
Chebyshev pattern. The half power beam width for
nulling patterns by the SA is almost equal to that of initial
Chebyshev pattern. The achieved null depths and the
perturbed patterns have also very good performance.

The weighting factors used give the antenna designer
greater flexibility and control over the actual pattern. The
antenna designer should make a trade-off between the
achievable and the desired pattern. By adjusting the
weighting factors it is possible to obtain very reasonable
approximations and trade-offs.

V. CONCLUSIONS
A simulated annealing technique is efficiently presented
for forming nulls to any prescribed directions by
controlling only the amplitude of each array element
while keeping the pattern as close as possible to initial
pattern. The trade-off of the relative importance between
the maximum sidelobe level and the null depth by
changing the weighting factors is also apparently
observed.
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