

“SURFINGFISH

(WEB AND GSM ENABLED

AQUARIUM CONTROL SYSTEM WITH SOCIAL NETWORKING

FEATURES)”

IN

EMO PROJECT COMPETITION

Project Supervisor: Assist. Prof. Dr Osman Kaan Erol

Project Team from KADIR HAS UNIVERSITY

Ahmet ARDAL EE

 Çağrı ĐLBAN EE

 Ender PIYALE EE

Faculty of Engineering

Kadir Has University

May 2009

 2

TABLE OF CONTENTS

 ACKNOWLEDGEMENTS 4

 ABSTRACT 5

1 INTRODUCTION 6

 1.1 Instruction 6

 1.2 Motivation 6

 1.3 Objective 7

2 APPROACH 8

 2.1 Identification of Problem 8

 2.2 Classification of Problem 8

 2.3 Problem 5H 1W 8

 2.4 Fishbone Diagram 8

3 METHOD 9

 3.1 Hardware 9

 3.1.1 Project Pier 9

 3.1.2 Power Supply 10

 3.1.3 PIC24FJ96GA008 11

 3.1.4 User Interfacing on Hardware 12

 3.1.5 Relay Control 14

 3.1.6 Filtering 15

 3.1.7 Temperature Control 15

 3.1.7.1 LM35A Temperature sensor 17

 3.1.7.2 Hysteresis Control 18

 3.1.8 Lighting 18

 3.1.9 Water Level Monitor 18

 3.1.10 pH Control 19

 3.1.11 Feeding 19

 3.1.12 RTC (Real Time Clock) 21

 3.1.13 Language Option 22

 3.1.14 Ethernet Module 22

 3.1.15 System Box 23

 3

 3.2 Web

27

 3.2.1 Architectural Overview 27

 3.2.1.1Technology Overview: ASP.NET Web Application 27

 3.2.1.2 Technology Overview : AJAX 32

 3.2.1.3 Technology Overview : MySQL(Database) 35

 3.2.1.4 Software Overview: ”Whidbey” Visual Studio.NET (IDE) 35

 3.2.1.5 Software Overview: EMS SQL Manager For MySQL 35

 3.2.2 The 3-Tier approach 37

 3.2.3 The Database 38

 3.2.3.1 Tables 39

 3.2.3.2 Stored Procedures 43

 3.2.4 DAL – Data Access Layer 49

 3.2.4.1 DAL introduction 49

 3.2.4.2 DAL classes 49

 3.2.5 The Business Logic Layer 50

 3.2.5.1 Classes 52

 3.2.6 Presentation Layer 53

 3.2.6.1XHTML & CSS 53

 3.2.6.2 Pages 53

4 PRICE LIST 58

5 CONCLUSION 59

6 TABLE OF FIGURES & TABLES 60

7 REFERENCES 63

8 CONTACTS 64

 4

 ACKNOWLEDGEMENTS

We would like to deeply thank to Assist.Prof.Dr.Osman Kaan EROL for his

invaluable guidance, kindness and understanding during this project. Without his care and

consideration, this project would likely not have matured.

 5

ABSTRACT

Proper aquarium maintenance requires attention and significant amount of time. A

specific knowledge about fishes and their requirements should be known. Aquarist should

be able to operate various kinds of maintenance tools such as filters, motors etc… This

project presents a microcontoller based solution to assist aquarist for important aquarium

maintenance issues.

 Primary, problem statement is done and targets of project are declared. The

solutions, which are offered for “autonomous” control of aquarium maintenance, are

briefed and systems are described.

 Project team intended to design and implement a system which is cabaple to

perform followings according to demands of aquarist: adjustment of water temperature,

feeding, lighting, water level monitor, and filtering.

 And main issue is “socializing standard aquariums”. Project includes web utility.

Social networking tool on the Web that connects aquarists worldwide and it manages

sharing aquarium datas between aquarists over web.

 6

1. INTRODUCTION

1.1.Instruction

Having an aquarium should be considered as more then a hobby. Generally, it is

presumed as putting some fish into a water tank and watching joyfully. However,

inattentive and insufficient attempts, which result in to bad experiences, would show the

reality: Having an aquarium requires many strict maintenance regulations according to the

dimensions, fishes and many other facts. Aquarium imitates the“real life” in a very small

place and the aquarist should maintain this by taking many considerations according to

changing conditions.

Many fishes originate from trophic climates and their living requirements can be

variable compared to aquarium enviroment. Therefore, controlling aquarium tempature and

PH degree is essential for the health of fishes. For instance, South American fishes require

acidic (PH 5.5-7) water while African fishes require basic (PH 7-8.5) water[2]. PH degree

computation is done by logaritmic calculations and requires continuous monitoring. On the

other hand, water tempature should be controlled in order to avoid temperature difference

between day and night. Moreover, aquarium should not be lighten more then 8-12

hours[1]. These are only some of main maintenance issues. As it is seen, aquarium

maintenance is hard and requires intensive care.

This project presents a microcontroller-based solution to assist aquarist in

conducting maintenance. System continously monitors the aquarium and performs

necessary actions by controlling various peripherals.

1.2. Motivation

Aquarium maintenance requires specific knowledge and allocation of important

amount of time. This system offers an autonomous control for challenging aquarium

maintenance issues. It will be helpful for the ones who can not share time for aquarium

maintenance or who uses for decorative purposes.

 7

1.3 Objective

Project team intended to design and implement a system which is cabaple to

perform following according to demands of aquarist: adjustment of water temperature,

feeding, lighting, water level monitor and effective filtering.

The system is based on microcontroller which is programmed to perform as an

operating system. System has an MIMO structure where multiple inputs are taken from

sensors and processed to give a control output through electric relays. System is cabaple to

perform multiple tasks simultenously thanks to its program architecture.

Microcontroller programming architecture (Operating System) also permits further

modifications such as new languages or user-demanded adjustments. New maintenance

tasks can be inserted to programme without changing its “core” and this provides an easy

enviroment for product development. The system contains RS232 port to add new features

and user-demanded adjustments to microcontroller. Also, an ICSP(In Circuit Serial

Programming) port provides accessibility for high-level programming issues which may

concern operating system.

System has an user-friendly and understandable interface to accept user inputs.

LCD screen and keypad are selected according to provide ergonomic interface. User can

choose either English and Turkish menus or add a new language easily. The location and

type of connectors are determined according to safety issues to avoid any electric accident.

Keywords: Aquarium, Microcontoller , Operating System, Aquarium Maintenance,

Engineering, Ethernet, Tcp/Ip

 8

2. APPROACH

2.1 Problem Identification

Aquariums have a big number of lovers and they are preffered as primary

decoration item in restaurants and shopping centers. However, the complexity of aquarium

mainteanance creates various problems such as losing fishs, costly part replacements etc…

Generally, the hobby customers leave their aquariums early or the decorative users do not

preffer aquariums due to their hard maintenance.

There are existing control systems which intended to help aquarist to conduct

maintenance but they are generally insufficient to progress a fully-autonomous control.

Some of existing systems may contain autonomous control however their structures are

inflexible and can not be adapted or modified easily by aquarist. Other fully-autonomous

systems are much above of reasonable prices.

2.2 Problem Classification

The required maintenance issues are certain and the tools(filters, motors, heater etc…)

are known. The techniques are determined to maintain an aquarium and this project does

not offer to improve them. An automatic control system which purposed to coordinate

various peripherals is needed. Therefore;

• Aquarist expactances are certain.

• Maintenance techniques are known.

• Solution is obviously a system which will coordinate peripherals.

A closed-end, design problem.

2.3 Problem 5W 1H

What ? : Aquariums require intensive maintenance

Where ? : Residences, restaurants, shopping centers etc…

When ? : Since aquariums became popular and their prices reduced to acceptable levels.

Who ? : Home users(hobby) and business owners(decorative).

Why ? : Maintenance variability according to changing enviroment and kind of fishes.

How ? : By causing fish loses, bad smell or bad view in aquarium.

 9

3 METHODS

3.1 Hardware

3.1.1 Project Pier

Figure 3.1 - Project Pier logo

In our project we decided to use a project tracking software. After looking around

for a while we've decided to give Project Pier a try for project tracking. It could be a good

choice for us for a number of reasons:

• It's free,

• It's multi-platform

• It's open source and has open APIs (an API is essentially a translator that helps

programmers make a program that talks to your program) so if we can't get the devs

or community to make a plug-in, I can potentially make it myself or have it made

• It runs on a Web server so we could access it from anywhere

 10

Figure 3.2 - Project Pier Page

3.1.2 Power Supply

Figure 3.3 - Power supply 3.3V output

 11

We have two main circuits in our aquarium control system and they have power

supply’s on. We need 12V for cooler fan, uln2003a, lcd, 5V for Rtc, keypad controller

and 3.3V for Pic24, ethernet controller etc.So we get 12 V input from adapter and organize

that input with linear regulators to 5V and 3.3V.Especially while using ethernet controller,

3.3V regulator MIC2910A needs heat sink because it warms up too much.

Figure 3.4 - Power supply 5V output

3.1.3 PIC24FJ96GA008

 Pic 24 is Microchip’s new microcontroller family.. We used PIC24FJ96GA008 in

this project because of many reasons. We can see some specifications of Pic 24 on picture

below.

Figure 3.5 - Pic24 general

 12

 That’s easy to implement ethernet or usb with this microcontroller, because it’s

working on 10Mhz and has large program memory which are too important for many

applications especially ethernet.

 Tcp/Ip stack needs large program memory which are important on embedded

systems. So PIC24FJ96GA008 is best choice for this embedded system design project.

But this type of microcontroller’s are in smd package. So we can’t solder it with our hands

and then we bought an adapter with PIC24FJ96GA008. We can see it below.

Figure 3.6 – Pic24FJ series

3.1.4 User Interfacing on Hardware

 We used 4*20 Lcd and keypad for user interface. User can enter system parameters

by keypad and control parameters on Lcd panel.

Figure 3.7 – Lcd Screen

 13

 We have to use special integrated circuit (MM74C922) for keypad. This IC inputs

keypad and generate 4 bit binary output to the Mcu. And it solves keypad debouncing in it.

Figure 3.8 – Keypad controller

Figure 3.9 – Keypad interface mechanism Figure 3.10 – Keypad working

 14

3.1.5 Relay Control

Figure 3.11 – Relays

We use relays to control our outputs like filter, cooler , lights, etc. It’s easy to

implement and control. We see that on schematic, relays are connected to ULN2003A IC.

This is a high voltage high current darlington transistor array. We need this IC because of

mcu’s output can’t supply over 25ma. We must provide 50ma to use relays’ inputs.

 15

3.1.6 Filtering

Filtering is essential to provide a proper enviroment for better fishes. Dirts, remains

of feeds and harmfull wastes should be filtered continously. Several divided parts of

aquarium are dedicated to progress filtering continously as shown in figure(3.12).

First part provides dirt filtering which is intended to clean rough, big items on

aquarium water. An overflow of water results the filtered water to pass to second divided

part which contains biological filters where useful bacterias populates to make water very

close to real enviroment. This section contains filters called BioBall which provide

sufficient and suitable surface area for bacteria population[4]. The last part contains active

carbon filters where toxics in aquarium water are cleaned.

Cleaned water then comes to main water collecting part where heated or cooled

water are also collected. Finally, a motor pumps the cleaned water back to aquarium.

Motor is capable to pump 600 lt/h and consumes 12W in optimum operation.

Figure 3.12 - Filtering. Upper view of Aquarium

Filtering is always open except for user-obtained duration to prevent waves on

aquarium water while fishes are feeding. The feeding control action deactivates filtering

for a certain amount of time.

3.1.7 Temperature Control

Most fishes are trophic and their necessities of enviroment show much difference.

Basically, trophic fishes are sensitive to tempature changes[1]. Therefore, aquarium

temperature should be monitored and kept under control as shown in fig(3.13).

 Dirt Filter
(White Sponge)

Biological Filter
(Bio Ball, Ceramic)

Pump
Motor

Cleaned Water Water Overflow

AQUARIUM

Active
Carbon

 16

Temperature difference between day-night and seaonal changes should be taken into

account.

Fig 3.13 - Temperature Control

Another important fact about temperature control is the reaction time. The

heater/cooler system should be able to rise or decrase the temperature in a reasonable time.

The power limitations and aquarium dimensions plays an important role at this point.

Project group conducted calculations and experiments in order to obtain best solution.

Primary, using a Peltier (A thermo-electric device) is considered and following results are

obtained as seen in table(3.1).

Table 3.1 - Power VS Required Time to Change a 70 lt. Aquarium’s Temperature by 1 C

(Watt) Seconds Minutes

45 6508,44 108,47

80 3661 61,016

121 2420,49 40,341

136 2153,52 35,892

168 1743,33 29,055

230 1273,39 21,223

400 732,2 12,203

545 537,394 8,9565

Results show that using Peltier for medium size aquariums are impractical

according to power limitations of system. Also, Peltier requires a power MOSFET driver

circuit and this creates adaptation problem when its needed to implement to another system

Aquarium
 +
 -

Sensor

Error>0 Tdesired

No

 Yes

Heater

Cooler

Tou

t

 17

Therefore, a simpler but effective solution, fridge cooler is considered. Fridge cooler can

be driven by relays easily and gives satisfactory performance compared to its price.

Figure 3.14 - Water Cooler System

Fridge cooler produces cool gases and circulates in its own system as shown in

fig(3.14). A motor, which is located inside aquarium, pumps water into a metal tube where

it will be curled to cool gas tube.

3.1.7.1 LM35A Temperature sensor

LM35DZ is a analog tempreature

sensor. It sense temperature and generate

analog output and then we read this with

microcontroller. On microcontroller side,

we convert analog signal to digital and use

that value.

Figure 3.15 – Temperature sensor

 18

3.1.7.2 Hysteresis Control

In order to extend parts’ life longer (espacially relays), oscillations caused by

frequent switching should be avoided. This can be achvied by determining an acceptable

interval around user-obtained temperature level. Relays are activated if only upper and

lower bounds of desired temperature is exceed.

3.1.8 Lighting

Proper lighting plays two important roles: One is to simulate day-night change in

order to provide real life enviroment for fishes[1]. The lighting is automatically turned on

and off according to user demands. Another is placed on very critical step of life cycle in

aquarium.

The carbondioxide-oxygen cycle is completed by plants leaving in the aquarium.

These plants require a specific interval of light spectrum. Therefore, a special type of

fluorescent lighting is used which can provide the necessary spectrum for water plants.

3.1.9 Water Level Monitor

Evaporation decreases water level slowly over the time. Keeping water level at

certain level is important because water amount is taken as reference in many system

calculations. Proper enviroment espacially concerns with water amount.

Water level is sensed by using a probe which is located on desired levels of

aquarium glass. System consists of three pins as shown in fig(3.16). The basic idea is: If

water level decreases below Pin 2, then Pin 2 and Pin 1 is open-circuited to give alarm to

user that water level is below desired height. Also, “water level high” alarm is given when

Pin 3 and Pin 1 is short-circuited.

 19

Figure 3.16 - Water Level Monitor and Possible Alarms

3.1.10 pH Control

pH desribes the acidic or basic degree of water. Simply, It gives the concentration

of hidrogen ions on water. pH degree of aquarium requires continous monitoring and

control due to fact that fishes can only live in certain pH degrees and they are very

sensitive to sudden pH changes[3].

The pH degree of aquarium is measured by a electronic pH probe and progressed

on microcontroller. Microcontroller compares the measurement with stored(desired)

degree and actives the carbon tank according to necessity.

3.1.11 Feeding

Microcontroller is capable to plan and distribute feeds to aquarium regularly by

simply relaying feed box’s dispenser. Filter motor is deactivated during this process in

order to avoid waves on water while fishes are feeding.

We design feeding machine but not implement yet. Also our control circuit and

software ready for feeding. We can see feeding machines design below.

It’s a circular design with too many cell. These cells includes foods for fishes.

 20

Figure 3.17 – Feeder side view

 In this design we have a dc or stepper motor to turn circular part with cells. Black

sell on picture shows that there is a hole under the feeding system and every move, foods

are felt down through this hole to the aquariums water.

Figure 3.18 – Feeder top view

 21

3.1.12 RTC (Real Time Clock)

Figure 3.19 – Reel time clock

 With Real Time Clock IC, DS1307 we can store real time clock without external

voltage need. After programming mcu, you can enter time once in start and it stores time,

day, month, year etc. without externel power supply up to a hundred year with 3V lithium

battery.

 So users parameter’s which was entered before by aquarist is never lost or mistake.

3.1.13 Language option

 We use a programming tecnique to implement special feature. Our system can be

use with two language (English and Turkish) at this time but it’s easy to add new

languages on system.

 Aquarist can be chose language with keypad and lcd interface. Also it can be

change any time.

 22

3.1.14 Ethernet module

 We bought Mikroelectronica’s ethernet module for our circuit. It has SPI interface

with its ethernet controller ENC28J60. Also we can do a printed circuit board for ethernet

but we bought it because of time constraint.

Figure 3.20 – ENC28J60

We used this module because it has 8 Kbytes of buffer ram, SPI serial interface. [5]

Figure 3.21 – Ethernet board

 23

3.1.15 System Box

 This system is a version two of our aquarium control project. First version of this

project have bad box design because of time constraint. We can see it on picture below.

It has jacks on it which was using for controlling heater, cooler, filter motor etc.

Figure 3.22 – Old system box

 But in version 2 we made some differences. We changed jacks with another system.

We implemented jacks with six input. On original parts inputs connected to 220V directly

but we opened and modified it. We connected different cables to the inputs.

 24

Figure 3.23 – First version of jacks

Figure 3.24 – Second version of jacks

 25

Figure 3.25 – Jacks after modified

 We used pleksiglass for constracting new box. First we design 3D box with

google Sketchup. Because of milimeters are important while integrating parts of box and

we get more proffesional system box. Our system box cut a fine figure.

Figure 3.26 – 3D model of system box

 26

Figure 3.27 – New system box

Figure 3.28 – SurfingFish board

 27

3.2 Web

3.2.1 Architectural Overview

 The Microsoft.NET Framework is a multi language platform for building,

deploying, and running Web Services and applications. ASP:NET is a compiled, .NET –

based environment, allowing authors to write applications in any .NET compatible

language, including Visual Basic.NET and Jscript.NET. For this project, C# was the

language used.

3.2.1.1Technology Overview:ASP.NET Web Application

Pages

.NET pages, known officially as "web forms", are the main building block for

application development. Web forms are contained in files with an ".aspx" extension; in

programming jargon, these files typically contain static (X)HTML markup, as well as

markup defining server-side Web Controls and User Controls where the developers place

all the required static and dynamic content for the web page. Additionally, dynamic code

which runs on the server can be placed in a page within a block <% -- dynamic code -- %>

which is similar to other web development technologies such as PHP, JSP, and ASP, but

this practice is generally discouraged except for the purposes of data binding since it

requires more calls when rendering the page.

Code-behind model

It is recommended by Microsoft for dealing with dynamic program code to use the

code-behind model, which places this code in a separate file or in a specially designated

script tag. Code-behind files typically have names like MyPage.aspx.cs or MyPage.aspx.vb

based on the ASPX file name (this practice is automatic in Microsoft Visual Studio and

other IDEs). When using this style of programming, the developer writes code to respond

to different events, like the page being loaded, or a control being clicked, rather than a

procedural walk through the document.

ASP.NET's code-behind model marks a departure from Classic ASP in that it

encourages developers to build applications with separation of presentation and content in

mind. In theory, this would allow a web designer, for example, to focus on the design

 28

markup with less potential for disturbing the programming code that drives it. This is

similar to the separation of the controller from the view in model-view-controller

frameworks.

User controls

ASP.NET supports creating reusable components through the creation of User

Controls. A User Control follows the same structure as a Web Form, except that such

controls are derived from the System.Web.UI.UserControl class, and are stored in ASCX files.

Like ASPX files, an ASCX file contains static HTML or XHTML markup, as well as

markup defining web control and other User Controls. The code-behind model can be

used.

Programmers can add their own properties, methods,[9] and event handlers.[10] An

event bubbling mechanism provides the ability to pass an event fired by a user control up

to its containing page.

User can also build Custom Controls for Asp.Net application. Where controls are in

compiled DLL file. And by using Register directive user can use control from DLL.

Rendering technique

ASP.NET uses a visited composites rendering technique. During compilation, the

template (.aspx) file is compiled into initialization code which builds a control tree (the

composite) representing the original template. Literal text goes into instances of the Literal

control class, and server controls are represented by instances of a specific control class.

The initialization code is combined with user-written code (usually by the assembly of

multiple partial classes) and results in a class specific for the page. The page doubles as the

root of the control tree.

Actual requests for the page are processed through a number of steps. First, during

the initialization steps, an instance of the page class is created and the initialization code is

executed. This produces the initial control tree which is now typically manipulated by the

methods of the page in the following steps. As each node in the tree is a control

represented as an instance of a class, the code may change the tree structure as well as

 29

manipulate the properties/methods of the individual nodes. Finally, during the rendering

step a visitor is used to visit every node in the tree, asking each node to render itself using

the methods of the visitor. The resulting HTML output is sent to the client.

After the request has been processed, the instance of the page class is discarded and with it

the entire control tree.

State management

ASP.NET applications are hosted in a web server and are accessed over the

stateless HTTP protocol. As such, if the application uses stateful interaction, it has to

implement state management on its own.ASP.NET provides various functionality for state

management in ASP.NET applications.

Application state

Application state is a collection of user-defined variables that are shared by an

ASP.NET application. These are set and initialized when the Application_OnStart event fires

on the loading of the first instance of the applications and are available till the last instance

exits. Application state variables are accessed using the Applications collection, which

provides a wrapper for the application state variables. Application state variables are

identified by names.

Session state

Session state is a collection of user-defined session variables, which are persisted

during a user session. These variables are unique to different instances of a user session,

and are accessed using the Session collection. Session variables can be set to be

automatically destroyed after a defined time of inactivity, even if the session does not end.

At the client end, a user session is identified either by a cookie or by encoding the session

ID in the URL itself. ASP.NET supports three modes of persistence for session variables

 30

In Process Mode

The session variables are maintained within the ASP.NET process. This is the

fastest way; however, in this mode the variables are destroyed when the ASP.NET process

is recycled or shut down. Since the application is recycled from time to time this mode is

not recommended for critical applications.

ASPState Mode

In this mode, ASP.NET runs a separate Windows service that maintains the state

variables. Because the state management happens outside the ASP.NET process and .NET

Remoting must be utilized by the ASP.NET engine to access the data, this mode has a

negative impact on performance in comparison to the In Process mode, although this mode

allows an ASP.NET application to be load-balanced and scaled across multiple servers.

However, since the state management service runs independent of ASP.NET, the session

variables can persist across ASP.NET process shutdowns.

SqlServer Mode

In this mode, the state variables are stored in a database server, accessible using

SQL. Session variables can be persisted across ASP.NET process shutdowns in this mode

as well. The main advantage of this mode is it would allow the application to balance load

on a server cluster while sharing sessions between servers.

View state

View state refers to the page-level state management mechanism, which is utilized

by the HTML pages emitted by ASP.NET applications to maintain the state of the web

form controls and widgets. The state of the controls are encoded and sent to the server at

every form submission in a hidden field known as __VIEWSTATE. The server sends back

the variable so that when the page is re-rendered, the controls render at their last state. At

the server side, the application might change the viewstate, if the processing results in

 31

updating the state of any control. The states of individual controls are decoded at the

server, and are available for use in ASP.NET pages using the ViewState collection.

Other

Other means of state management that are supported by ASP.NET are cookies,

caching, and using the query string.

Template engine

When first released, ASP.NET lacked a template engine. Because the .NET

framework is object-oriented and allows for inheritance, many developers would define a

new base class that inherits from "System.Web.UI.Page", write methods here that render

HTML, and then make the pages in their application inherit from this new class. While this

allows for common elements to be reused across a site, it adds complexity and mixes

source code with markup. Furthermore, this method can only be visually tested by running

the application - not while designing it. Other developers have used include files and other

tricks to avoid having to implement the same navigation and other elements in every page.

ASP.NET 2.0 introduced the concept of "master pages", which allow for template-based

page development. A web application can have one or more master pages, which

beginning with ASP.NET 3.5, can be nested.[14] Master templates have place-holder

controls, called ContentPlaceHolders to denote where the dynamic content goes, as well as

HTML and JavaScript shared across child pages.

Child pages use those ContentPlaceHolder controls, which must be mapped to the

place-holder of the master page that the content page is populating. The rest of the page is

defined by the shared parts of the master page, much like a mail merge in a word

processor. All markup and server controls in the content page must be placed within the

ContentPlaceHolder control.

When a request is made for a content page, ASP.NET merges the output of the

content page with the output of the master page, and sends the output to the user.

 32

The master page remains fully accessible to the content page. This means that the

content page may still manipulate headers, change title, configure caching etc. If the master

page exposes public properties or methods (e.g. for setting copyright notices) the content

page can use these as well. [5]

3.2.1.2 Technology Overview : AJAX

Ajax (also known as AJAX), shorthand for "Asynchronous JavaScript and XML,"

is a web development technique for creating interactive web applications. The intent is to

make web pages feel more responsive by exchanging small amounts of data with the server

behind the scenes, so that the entire web page does not have to be reloaded each time the

user requests a change. This is intended to increase the web page's interactivity, speed, and

usability. The first use of the term in public was by Jesse James Garrett in February 2005.

Garrett thought of the term when he realized the need for a shorthand term to represent the

suite of technologies he was proposing to a client. Although the term Ajax was coined in

2005, most of the technologies that enable Ajax started a decade earlier with Microsoft's

initiatives in developing Remote Scripting. Techniques for the asynchronous loading of

content on an existing Web page without requiring a full reload date back as far as the

IFRAME element type (introduced in Internet Explorer 3 in 1996) and the LAYER

element type (introduced in Netscape 4 in 1997, abandoned during early development of

Mozilla). Both element types had a src attribute that could take any external URL, and by

loading a page containing JavaScript that manipulated the parent page, Ajax-like effects

could be attained. This set of client-side technologies was usually grouped together under

the generic term of DHTML. Macromedia's Flash could also, from version 4, load XML

and CSV files from a remote server without requiring a browser being refreshed.

Advantages

User interface

The most obvious reason for using Ajax is an improvement to the user experience.

Pages using Ajax behave more like a standalone application than a typical web page.

Clicking on links that cause the entire page to refresh feels like a "heavy" operation. With

Ajax, the page often can be updated dynamically, allowing a faster response to the user's

interaction. While the full potential of Ajax has yet to be determined, some believe it will

 33

prove to be an important technology, helping make the Web even more interactive and

popular than it currently is. Bandwidth usage By generating the HTML locally within the

browser and only bringing down JavaScript calls and the actual data, Ajax web pages can

appear to load relatively quickly since the payload coming down is much smaller in size.

An example of this technique is a large result set where multiple pages of data exist. With

Ajax, the HTML of the page (e.g., a table structure with related TD and TR tags) can be

produced locally in the browser and not brought down with the first page of the document.

In addition to "load on demand" of contents, some web-based applications load stubs o

event handlers and then load the functions on the fly. This technique significantly cuts

down the bandwidth consumption for web applications that have complex logic and

functionality. [6]

Separation of data, format, style, and function a less specific benefit of the Ajax

approach is that it tends to encourage programmers to clearly separate the methods and

formats used for the different aspects of information delivery via the web. Although Ajax

can appear to be a jumble of languages and techniques, and programmers are free to adopt

and adapt whatever works for them, they are generally propelled by the development

motive itself to adopt separation between the following:

* Adopt separation between the raw data or content to be delivered - which is normally

embedded in XML and sometimes derived from a server-side database.

* Adopt separation between the format or structure of the webpage - which is almost

always built in HTML (or better, XHTML) and is then reflected and made available to

dynamic manipulation in the DOM.

* Adopt separation between the style elements of the webpage: everything from fonts to

picture placement are derived by reference to embedded or referenced CSS.

* Adopt separation between the functionality of the web page which is provided by a

combination of

1. Javascript on the client browser (also called DHTML),

2. Standard HTTP and XMLHttp for client-to-server communication, and

 34

3. Server-side scripting and/or programs using any suitable language preferred by

the programmer to receive the client's specific requests and respond appropriately.

Figure 3.29 – Ajax and http diagram

 35

3.2.1.3 Technology Overview : MySQL(Database)

.MySQL was designed to work with small and mid-sized databases. We believe

MySQL is better than other Web database options because along with being the most

widely used and best supported Web database, it is a true relational database. And in this

Project we used mysql database[7]

Figure 3.30 – MySQL logo

3.2.1.4 Software Overview: ”Whidbey” Visual Studio.NET (IDE)

We used visual studio ide for this project because of several reasons;

Visual Studio includes a code editor supporting IntelliSense as well as code refactoring..
Other built-in tools include a forms designer for building GUI applications, web designer,
class designer, and database schema designer. It allows plug-ins to be added that enhance
the functionality at almost every level [8]

.

Figure 3.31 –Visual Studio

 36

3.2.1.5 Software Overview: EMS SQL Manager For MySQL

We used EMS SQL Manager for MySQL for this project. It could be a good choice

for us for a number of reasons:

Figure 3.32 – Sql Manager for mysql

Key Features

• Full support of MySQL versions from 3.23 to 6.0

• Support of UTF8 data

• Rapid database management and navigation

• Simple management of all MySQL objects

• Advanced data manipulation tools

• Powerful security management

• Excellent visual and text tools for query building

• Impressive data export and import capabilities

• Report designer with clear in use report construction wizard

• Powerful Visual Database Designer

• Easy-to-use wizards performing MySQL services [9]

 37

3.2.2 The 3-Tier approach

Figure 3.33 – 3-Tier approach

The purpose of the 3 tier approach is to divide the design into layers that have

different purposes. Each layer can then be independently worked on, improved, redesigned

and so on. Only the interfaces between the layers need to stay as they are if we don't want

change in one layer to affect the others.

Using this approach has several benefits:

• Scalability – Splitting the design into layers makes it much easier for the web project to

grow bigger in size. At first all layers can be on one server. Later, if the website is

successful and attracts many visitors, one layer can be extracted to another server to

balance the load, and so on. Different programmers can work on different tiers –no

programmer really has to know the project from end to end.

 38

• Robustness – The project in a tiered approach is less sensitive to failure, and therefore

more robust. When something goes wrong, the responsible layer is immediately

recognized, and knowing what to fix is simpler and faster in comparison to a project that

has all the logic in a single layer. Moreover, intrusion is also more difficult in a multi

layered environment, because there are more layers for the intruder to penetrate. Getting all

the way to the database is harder in a layered design.

3.2.3 The Database

We used Mysql as our database. Here is the database diagram

Figure 3.34 – Database diagram

 39

3.2.3.1 Tables

Table 3.2 – Members table

Table – members: Upon registration, each user gets a unique user id (id) which acts as the

primary key in the table. The table stores username and password for the log in the

website.

Table 3.3 – Friendship_request table

Table – friendship_request: This table represents the friendship requests between the

members of surfingfish site.Message field holds the optional message text while making

the friendship request. DateReqMade holds and optional message while making the

friendship request.FromMemberID and ToMemberId represents who makes the request

and to whom the request was made and each request gets unique id(Id)

Table 3.4 – Friendship table

 40

Table - friendship: This table defines a friendship relationship between pairs of member

FromMemberID represents the member who made the friendship request and

ToMemeberID represents whom the friendship request was made and each friendship get

unique id(Id)

Table 3.5 – Messages table

Table – messages: This table is in charge of holding private messages. Each new message

gets unique identifier Iid) which is the primary key of the table. ToMemberId represents

the person who got the message, and ToMemberId represents the person who sent the

message. This table also stores message’s post date, and who deleted message data.

Table 3.6 – Reply_messages table

Table – reply_messages: This table is holding reply messages, Message field reperesents

the message content, ParentMessageId represents to which message this reply message is

sent, FromMemeberId field represnts to who sent the message and DatePosted field holds

the posted time of the reply message.

 41

Table 3.7 –Albums table

Table – albums: This table holds information about the albums that have been added.

Every album gets unique identifier (Id), and the user who uploaded is represented

by MemberID. DateCreated field is represent the create date of the album and IsPrivate

field is represent album’s privacy (only friends can see the albums or everyone can see the

albums).

Table 3.8 – Album_commnets table

Table – album_comments: This table holds comments of the albums. MemberId

represents the member who made the comment, and Comment represents the album

comment text and DateAdded represents when the comment is added. AlbumId represents

which album the comment was made.

Table 3.9 – Photos table

 42

Table – photos: This table hold the information about photos. Every photo gets unique

identifier (Id).This table stores; photo file name (FileName), who added photo

(MemeberId), which album this photo belongs to (AlbumId) and caption for the photo

(Caption).

Table 3.10 – Photo_comments table

Table – photo_comments: This table holds comments of the photos. MemberId represents

the member who made the comment, and Comment represents the album comment text

and DateAdded represents when the comment is added. PhotoId represents which photo

the comment was made.

Table 3.11 – Profiles table

Table – profiles: This table holds personal information of the member like birth date, sex,

country, interest etc.

 43

Table 3.12 –Themes table

Table – themes: This table holds the theme information. Name field represents the theme

name and CssFolder represents css file names for this theme.

3.2.3.2 Stored Procedures

A stored procedure is a subroutine available to applications accessing a relational

database system. Stored procedures (sometimes called a proc, sproc, StoPro, or SP) are

actually stored in the database data dictionary.

Typical uses for stored procedures include data validation (integrated into the database) or

access control mechanisms. Furthermore, stored procedures are used to consolidate and

centralize logic that was originally implemented in applications. Large or complex

processing that might require the execution of several SQL statements is moved into stored

procedures and all applications call the procedures only.

We used stored procedures as the database interface for the DAL. Here is the stored

procedures diagram.

Figure 3.35 – Stored procedure diagram

 44

Procedure - Friends_RemoveFriends:

Table 3.13 – Friends stored procedure table

This procedure gets _FriendshipId as an input parameter and deletes the friend from

the friendship table.

Procedure - MembersGetAll:

This procedure hasn’t got any parameters. This procedure gets all members from

the members table and orders the members by member id.

Table 3.14 – Memebers get all stored procedure table

Procedure – Members_ActivateAccount:

Table 3.15 – Activate account stored procedure table

This procedure activates the new member of the site with the specified member id

(_MemberId) and activation key (_ActivationKey) and returns result of the activation
(_ResultCode) and _LastId through the output parameters.

 45

Procedure – Members_AuthenticateMember:

Table 3.16 –Authenticate member stored procedure table

This procedure authenticates the member and returns with member’s private

information.

Procedure – Members_InsertPendingMembers:

Table 3.17 – Insert pending stored procedure table

This procedure inserts a new row in the pending_member table and returns the

LastId and _ResultCode of the added row through the output parameter and It takes input

values for all fields of this table.

 46

Procedure – Messages_GetMessageThreads:

Table 3.18 –Get message stored procedure table

This procedure gets _MessageId as an input parameter and returns with some

information of the message (posted date (_DatePosted), name of the sender

(_SenderName), Subject of the message (_Subject), Message (_Message), sender’s Id

(_SenderId))

Procedure – Messages_GetNumberOfUnreadMessages:

Table 3.19 – Unread messages stored procedure table

This procedure gets _MemberId as an input parameter and returns value of the

number of messages (_NumofMessages) through the output parameter.

Procedure – Messages_GetReceivedMessages:

Table 3.20 –Recieved messages stored procedure table

This procedure gets _MemberId and page attributes (_PageIndex, _PageSize) and

returns value of the number of messages(_NumOfMessages) through the output parameter

 47

Procedure – Messages_InsertReplyMessage:

Table 3.21 – Reply messages stored procedure table

This procedure inserts a new row in the reply_messages table and returns the LastId

of the added row through the output parameter and It gets send date of the message

(_DatePosted), sender’s id(_SenderId), message id (_MessageId) and message(_Message)

Procedure – Photos_GetAlbumNameById:

Table 3.22 – Album name stored procedure table

This procedure gets album name by album’s id. The procedure gets an album id

(_AlbumID) as an input parameter and returns the name of the album (_AlbumName)

through output parameter.

Procedure – Photos_GetAlbums:

Table 3.23 – Get albums stored procedure table

This procedure gets albums from the albums table by member id (_MemberID).

 48

Procedure – Photos_GetPhotoByIdx:

Table 3.24 – Get photo stored procedure table

This procedure returns number of photos (_NumofPhotos) whose album Id

(AlbumId) and photo index (_PhotoIdx) is passed as an input.

Procedure – Photos_GetPhotoComments:

Table 3.25 –Photo comments stored procedure table

This procedure gets the comments of photo by photo id (_PhotoId) from the

photo_comments table.

Procedure – Photos_InsertPhoto:

Table 3.26 – Insert photo stored procedure table

This procedure inserts a new row in the photos table and returns the LastId of the

added row through the output parameter.

 49

Procedure - Photos_InsertPhotoComment :

Table 3.27 –Insert photo comment stored procedure table

This procedure inserts a new row in the photo_comments table and returns the

LastId of the added row through the output parameter.

3.2.4 DAL – Data Access Layer

3.2.4.1 DAL introduction

The DAL acts as an abstraction layer between the business logic and the database.

Our focus was on designing it so that adding functionality to it will be easy and simple. As

web sites grow, it is only a matter of time until more functionality is needed, and when

new tables are added we don't want them to be difficult to implement in the DAL.

3.2.4.2 DAL classes

Figure 3.36 – DAL classes diagram

 50

PhotoProvider.cs:

“PhotoProvider.cs” module provides access to database tables related to photo

albums functionality. It contains public static functions and each one encapsulates a stored

procedure. By calling those methods the business logic layer and the presentation layer can

access and modify photo albums, photo comments related database tables.

MemberProvider.cs:

“MemberProvider.cs” module provides access to database tables related to website

members. It contains public static functions and each one encapsulates a stored procedure.

By calling those methods the business logic layer and the presentation layer can access and

modify member registration, authentication etc. related database tables.

MessageProvider.cs:

“MessageProvider.cs” module provides access to database tables related to

messages. It contains public static functions and each one encapsulates a stored procedure.

By calling those methods the business logic layer and the presentation layer can access and

modify message sending, message retrieval, message removal etc. related database tables.

FriendProvider.cs:

“FriendProvider.cs” module provides access to database tables related to friendship.

It contains public static functions and each one encapsulates a stored procedure. By calling

those methods the business logic layer and the presentation layer can access and modify

friendship related database tables.

3.2.5 The Business Logic Layer

The business classes are created directly under the ~/App_Code folder, in a BLL

subfolder so that they are automatically compiled at runtime, just like the pages. Business

classes use the DAL classes to provide access to data and are mostly used to enforce

 51

validation rules, check constraints, and provide an object-oriented representation of the

data and methods to work with it. Thus, the BLL serves as a mapping layer that makes the

underlying relational database appear as objects to user interface code. Relational

databases are inherently not object oriented, so this BLL provides a far more useful

representation of data.

Figure 3.37 – BLL classes diagram

 52

3.2.5.1 Classes

Member.cs: The class Member comprised of all the general information about the member

of the website. The member inserts this information while registering to surfingfish

website.

AquariumListItem.cs: The class AquariumListItem comprised of all the information

(aquarium size, aquarium type, aquarium population) about the member’s aquarium.

FriendListItem.cs: The class FriendListItem holds the friendship information between

members.

MessageItem.cs: The class MessageItem holds information about a message members

send to one another such as is read? or unread?, date posted and more.

AlbumListItem.cs: The class AlbumListItem holds information about every created

album. Every user can create album and upload pictures to his page. The information about

the picture, such as album name, date it was created, number of photos and more.

PhotoCommentItem: The class PhotoCommentItem holds information about album

comments. The information about comments, such as date it was posted, name of the

commenter and more.

SessionData.cs: The class SessionData holds information about the member when member

not signed out from the surfingfish website

SessionManager.cs: The class SessionManager holds the information about the member’s

session like log in or log out.

MessageThreadItem: The class MessageItem holds information about a message

members send to one another.

 53

3.2.6 Presentation Layer

3.2.6.1 XHTML & CSS

Designing a modern web site in a standard compliant way means to separate

structure from appearance. This means that the HTML code should not contain anything

regarding the visual style of the web page, but be written what is was originally meant to

do – define structure. To put an emphasis on writing HTML for structure only, XHTML is

used instead of HTML. XHTML is basically HTML that is written according to XML

rules, which are much stricter than plain HTML. As for appearance – this is where CSS

(cascading style sheets) comes into play. This determines how the site will look like and

'feel' to the user. There are several advantages in this separation:

1. XHTML code that defines structure only is much easier to read, maintain and

manipulate when needed.

2. A separate object for managing appearance (the CSS) means we can change the entire

way the site looks without having to change anything in the XHTML code, and that we can

change structure and know how it will look.

3.2.6.2 Pages - Essentially, everything comes down to the web pages. They are what the

user sees. These are the web pages we created:

MemeberRegistration.aspx – This is the first page the user sees after entering the web

site's url address. This page asks him for his username/password. If the user isn't registered

he comes here, fills out his personal details, and chooses a passwords and registers.

 54

Figure 3.38 – Memeber registration page

Home.aspx – This is the first page the user sees after logging in. After logging in the user

sees his own main page, and if he selects a friend he sees his friend's main page, pictures

aquariums and more.

Figure 3.39 – Home page

 55

Logout.aspx – If the users want to log out from the surfingfish website they must click the

logout tab and redirected to the Home.aspx page.

Friends.aspx – This page displays the viewed users's list of friends.

Figure 3.40 –Friends page

Inbox.aspx – Displays previews of all the messages that the logged in user received.

Figure 3.41 –Inbox page

 56

Photos.aspx – Here user can watch and upload pictures. Pictures are displayed as

thumbnails and the collection of pictures can be paged through.

Figure 3.42 – Photos page

AquaControlPanel.aspx: Here user can monitor and control the aquarium parameters.

Figure 3.43 –Control panel page1

 57

Figure 3.44 –Control panel page2

TemperatureStatistics.aspx: Here you can monitor the aquarium’s temprature statistics.

Figure 3.45 –Temperature statistics page

 58

4 PRICE LIST

Electronic Components 350 TL

Aquarium Glass 200 TL

Water Cooler 100 TL

Water Level Probe 25 TL

Heater 25 TL

Pleksiglass 50 TL

Pic24 Module 74 TL

Ethernet Module 72 TL

Domain + Hosting 100 TL

Other Aquarium Equipments 90 TL

Gsm Module 71 TL

Total : 1157 TL

 59

5 CONCLUSION

The project is completed according to proposed features and maintenance issues are

now able to be progressed.

Experiments are conducted to examine sysem limits. Simultenous inputs are given

and the responses of sensors are taken. The project team observed the performances of

various equipment and considered about certain replacements.

 60

6 TABLE OF FIGURES & TABLES

Figure 3.1 - Project Pier logo 9

Figure 3.2 - Project Pier Page 10

Figure 3.3 - Power supply 3.3V output 10

Figure 3.4 - Power supply 5V output 11

Figure 3.5 - Pic24 general 11

Figure 3.6 – Pic24FJ series 12

Figure 3.7 – Lcd Screen 12

Figure 3.8 – Keypad controller 13

Figure 3.9 – Keypad interface mechanism 13

Figure 3.10 – Keypad working 13

Figure 3.11 - Relays 14

Figure 3.12 - Filtering. Upper view of Aquarium 15

Figure 3.13 - Temperature Control 16

Table 3.1 - Power VS Required Time to Change a 70 lt. Aquarium’s Temperature by

1o C

16

Figure 3.14 - Water Cooler System 17

Figure 3.15 – Temperature sensor 17

Figure 3.16 - Water Level Monitor and Possible Alarms 19

Figure 3.17 – Feeder side view 20

Figure 3.18 – Feeder top view 20

Figure 3.19 – Reel time clock 21

Figure 3.20 – ENC28J60 22

Figure 3.21 – Ethernet board 22

Figure 3.22 – Old system box 23

Figure 3.23 – First version of jacks 24

Figure 3.24 – Second version of jacks 24

Figure 3.25 – Jacks after modified 25

Figure 3.26 – 3D model of system box 25

Figure 3.27 – New system box 26

Figure 3.28 – SurfingFish board 26

 61

Figure 3.29 – Ajax and http diagram 34

Figure 3.30 – MySQL logo 35

Figure 3.31 –Visual Studio 35

Figure 3.32 – Sql Manager for mysql 36

Figure 3.33 – 3-Tier approach 37

Figure 3.34 – Database diagram 38

Table 3.2 – Members table 39

Table 3.3 – Friendship_request table 39

Table 3.4 – Friendship table 39

Table 3.5 – Messages table 40

Table 3.6 – Reply_messages table 40

Table 3.7 –Albums table 41

Table 3.8 – Album_commnets table 41

Table 3.9 – Photos table 43

Table 3.10 – Photo_comments table 42

Table 3.11 – Profiles table 42

Table 3.12 –Themes table 43

Figure 3.35 – Stored procedure diagram 43

Table 3.13 – Friends stored procedure table 44

Table 3.14 – Memebers get all stored procedure table 44

Table 3.15 – Activate account stored procedure table 44

Table 3.16 –Authenticate member stored procedure table 45

Table 3.17 – Insert pending stored procedure table 45

Table 3.18 –Get message stored procedure table 46

Table 3.19 – Unread messages stored procedure table 46

Table 3.20 –Recieved messages stored procedure table 46

Table 3.21 – Reply messages stored procedure table 47

Table 3.22 – Album name stored procedure table 47

Table 3.23 – Get albums stored procedure table 47

Table 3.24 – Get photo stored procedure table 48

Table 3.25 –Photo comments stored procedure table 48

Table 3.26 – Insert photo stored procedure table 48

 62

Table 3.27 –Insert photo comment stored procedure table 49

Figure 3.36 – DAL classes diagram 49

Figure 3.37 – BLL classes diagram 51

Figure 3.38 – Memeber registration page 54

Figure 3.39 – Home page 54

Figure 3.40 –Friends page 55

Figure 3.41 –Inbox page 55

Figure 3.42 – Photos page 56

Figure 3.43 –Control panel page1 56

Figure 3.44 –Control panel page2 57

Figure 3.45 –Temperature statistics page 57

 63

7 REFERENCES

[1] R.E. Yalçın. “Akvaryum Serüvenine Đlk Adım”. Makeleler(2005) www.akvaryum.com

[2] R.E. Yalçın. “Akvaryum ve Suyun Kimyası”. Makeleler(2005) www.akvaryum.com

[3] www.projectpier.org/about/

[4] T. Kuloğlu. “Biyolojik Filtrasyon”. Makeleler(2005) www.akvaryum.com

[5] http://en.wikipedia.org/wiki/Asp.net

[6] http://en.wikipedia.org/wiki/Ajax

[7] http://www.mysql.org

[8] http://en.wikipedia.org/wiki/Microsoft Visual S tudio

[9] http://sqlmanager.net/

 64

8 CONTACTS

PROJECT TEAM

Name Surname: ENDER PĐYALE

University:KADIR HAS UNIVERSITY

Faculty: ENGINEERING

Department: ELECTRONIC ENGINEERING

Email: enderpiyale@gmail.com

Name Surname: AHMET ARDAL

University: KADIR HAS UNIVERSITY

Faculty: ENGINEERING

Department: ELECTRONIC ENGINEERING

Email: ardalahmet@hotmail.com

Name Surname: ÇAĞRI ĐLBAN

University: KADIR HAS UNIVERSITY

Faculty: ENGINEERING

Department: ELECTRONIC ENGINEERING

Email: cagriilban@yahoo.com

PROJECT SUPERVISOR

Name Surname: ASSIST. PROF. DR OSMAN KAAN EROL

University: ĐSTANBUL TECHNICAL UNIVERSITY

Faculty: ELECTRICAL – ELECTRONIC ENGINEERING

Department: COMPUTER ENGINEERING

Email: okerol@itu@edu.tr

