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Abstract:

‘ This paper investigates an objective approach to the design of fuzzy controllers. The approach uses an
improving genelic algorithm, a recent search and optimization lechnique to optimize the parameiers of supervised
Suzzy controller. Such parameters as the membership functions and the rule base can not be objectively elicited in
many cases. A supervised controller is a controller which can guarantee that the state of system is uniformly
bounded, so it guarantee stability and that we can release it when we determine the objective function of genetic
algorithm. To achieve this design, we have applied the approach to a multivariable problem for a nonlinear
biomedical process, namely, control of anesthesia. The simulation results are included to demonstrate that

incorporating the control engineering methods in biomedicine results in Superior accurate supervising

performance.
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1. Introduction

Several studies have shown fuzzy logic control {1}, [2]
to be an appropriate method for the control of complex
continuous unidentified or partially identified processes,
many of which cannot easily be modeled in a
mathematical way. This is because unlike a conventional
process controller such as a PID controller, no rigorous
mathematical model is required to design a good fuzzy
controller (FLC) but a set of linguistic information is
incorporated from humans experts. For that reason, the
FLC has been successfully applied in many complex
processes [3], [4], however, they experience a deficiency
in knowledge acquisition, and rely to a great extent on
empirical and heuristic knowledge which generally,
cannot be eliciled. Among the problems to be resolved in
fuzzy controller design, are the determination of the
linguistic state space, definition of the membership
functions and the derivation of the control rules, which
are in traditional method obtained by heuristic trial-and-
error approach based on analyzing process behavior, and
consequent iterative modification to obtain acceptable
performance, and such methods are laborious.and time
consuming. These shortcomings have motivated the use
of an evolutionary algorithm (5] to design the FLC
enabling to create and modify its knowledge base.

In this paper, we investigate the use of Genetic
Algorithms (GAs) to the complete design of a
multivariable control of anesthesia with its two areas:
unconsciousness and muscle relaxation in surgical
operation, attaining and maintaining in such way, the
control of depth of anesthesia.

This paper is structured as follows: section 2 reviews
the GA functioning principle in the search space. In

section 3 and 4 we present the general concept of the
FLC. and how GA is applied to the design of the FLC.
Section 5 describes anesthesia system. while section 6
and 7 include algorithm description and simulation
results. Finally we summarize the paper in section 8.

2. Brief Review of GA Optimizer

2.1 Principle of GA:

Recently, research has emphasized in optimization
methods, which employ principles of evolution and
heredity from nature [6]. These algorithms search the
problem space with a population of points and
probabilistic decisions.
The GA of which the pseudocode is presented in Fig.1
performs the optimization process with a population of
individuals, each of which represents a search point in
the space of potential solutions to the problem [7]. {8].

Initialize P(t)
evaluate P(t)

:population at time t

while (not terminate condition)do
begin
t=t+l iincrement generation

select P(t) from P(t-1)
reccmbine P(t)

tapply genetic operator
evaluate P(t)

end

end

Fig 1 Pseudocode of GA

The population is randomly created and then, evolved
toward better regions of the search space by means of
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simulating somec of the process observed in nature
evolution, like sclection, crossover and mutation
operations. First the GA maintains a population of
individuals, P()=x1(1),x2(t),x3(1),.....xn(t) for iteration t,
each solution xi(t) is evaluated to give measure of its
fitness. The new population (iteration t+1) is formed by
selecting the more fit individuals to reproduce more.
Some members of the new population undergo
transformation like crossover operation (one or more
crossing sites) which create new individuals, by
combining parts from several individuals and unary
mutation operator which create new individuals by a
change in a single individual. After some number of
generations, the search converges and is successful, if the
best individual represents the global optimum solution.
Despile that GAs require only information concerning
the quality of the solution, not derivative information or
complete knowledge of the problem, they suffer from the
time taken in evolution process, which imposcs
restriction on the size of the population and also the
number of generations required to run the GA to a final
solution. To alleviate this problem, parallel processing
{91, [10] can be employed to reduce the execution time;
by using one-population and muliiple processors 1o
divide the cvaluation task, or by separating
subpopulations on each processor which develop
jndividual solutions

3. General Concept of the FLC

The basic configuration of the logic system considered in
this paper is shown in fig.2. In what follows, a brief
description of each component and the basic fuzzy
operations that it performs is presented.

3.1 Knowledge Base constructed with fuzzy rules

The knowledge base for the fuzzy logic system contains a
collection of fuzzy IF-THEN rules. The MISO IF-THEN
rule(s) are of the form

RY: IFx, isA)and..x, isA;, THEN yisC’ )]

where x = (x,,...,x,)” €V c R"andy €W c R denote
the linguistic variables associated with the inputs and
output of the fuzzy logic system [1]. 4/ and ¢/ are labels
of the fuzzy sets in V and W, respectively, and i denotes
the number of input/state of fuzzy logic system, i,
i=12,n, and j =1,2,..M. Fuzzy rule (1) can be
implemented using fuzzy implication, which gives

Al x..xA4] > ()] (2)

which is a fuzzy set defined in the product space V X W.
Based on generalizations of implications in multivalued
logic, many fuzzy implication rules have been proposed
in the fuzzy logic literature. In this paper, we define the
implication rule using the t-norm operator, given by

st ¢ SO LY N C S M CR MR )
where ¥ denotes the t-norm, which in general.
corresponds to the conjunction ‘min’ or "product’.

3.2 Fuzzy Inference Engine

The fuzzy inference engine performs a mapping from
fuzzy sets in V to fuzzy sets in R, based on the fuzzy IF-
THEN rules in the fuzzy rule base and the compositional
inference rule.

Let B be a fuzzy set in V, then the fuzzy relational
equation B <R’ were"o" is the sup-star composition.
results in M fuzzy sets. Using the t-norm operator yields

B ) =sup [ * (5] &)

Fuzzy Rule Base

(D
v

L
Fuzzy Enference
Engine

4

Fig.2 A block diagram of basic fuzzy iogic system

In order to combine the M fuzzy sets into one fuzzy set,
the t-norm can be employed and it results in

Hp.(rt, rM) = H gopt )+ L) ) &

where + denotes the t-conorm, the most commonly used
operation for + is ‘max’. If we use the product
operation and choose * in (3) and (4) to be an algebraic
product, then the inference is called product inference.
Using the product inference, the equation (4) becomes

.uR,RJ (y) = sup!d/ [.uB (-{)‘ud,‘ (xl)#,u (xn ).u(-.' (,V)]‘ (6)

3.3 Fuzzifier

The fuzzifier maps a crisp point X into a fuzzy set B in
V. In general, there are two possible choices of this
mapping {2} namely, singleton, or nonsingleton. In this
paper, we use the singleton fuzzifier mapping, i.e.,

for x=x'

PRESESS @)

for othenwise

3.4 Defuzzifier

The defuzzifier maps fuzzy sets in W to a crisp point in
R. In general; there are different possible choices of this
mapping [2]), among others, maximum, center gravity,
and center-average defuzzifier. In this paper, we use the
center-average defuzzifier mapping, i.e.,
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T ¥ (V) ®)
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where y’ is the point in R at which i chieves its

maximum value (assume that u ;(y’) =1).

3.5 Fuzzy Basis Functions

The fuzzy logic system with center-average defuzzifier
(8), product inference (6), and singleton fuzzifier (7), is
of the following form

WD 2 YT (2D &

D - | PR

if we fix the ¢, (x,) ’sand view the y’ s as adjustable

parameters, then the equation (9) became :

v(x) =8"8(x) (10)

(8'(x).....8"(x))7 is a regressive vector with the regressor
6/ (x) defined as

[_I:NHA,' (,‘r,}

Y e e 1
S STy P o

which are called fuzzy basis functions (FBF’s) and
these FBF's are universal approximators [2]). We can fix
all the parameters in &7 (x) at the beginning of the FBF
cxpansion design procedurc. so that the only {ree design
parameters are g, .

4. Interaction Of The FLC Module With GA
Optimizer

Fig.3 shows the interconnection of the FLC,
simulation model, and GA optimizer {12], [9]. The FLC
operates the simulation model of the plant to be
controlled. An individual of the GA population
represents one trial set of fuzzy membership functions
and rules [11]. So the GA optimizer sends a parameter
assignment (an individual) to the FLC which determines
its knowledge base. The model is reset to its initial
conditions. During control operation, the values of state
variables are sampled with some sampling time, while
the FLC issues control commands to the simulation
model.

objective knowledge base
function T
v
control
” 1 signal simulation
FLC model

Fig.3 GA optimization of the module
S. Anesthesia System Description

In order to identify the muscle relaxation process,
and the unconsciousness process associated with drugs
[13], Pharmacology comprises two main areas known as
pharmacoknetics and pharmacodynamics [14], {15}
Pharmacoknetics studies the relationship that exists
between drug dose and drug concentration in the blood
plasma as well as other parts of the body.
Pharmacodynamics, however, is concerned with the drug
concentration and the effect produced. In light of these
considerations, the linear pharmacoknetics, which
describe distribution of drugs into the blood, are given by
the following equation, i

[Paralysis] 5 [Gl 1(s) GIZ(s):”Ul(s) }

MAP 0 G22(s) U2(s)|
with

Gl1(s) = Le (1 +10.64s)
(1+3.085)(1+481s)1+34.365)

G D2 ok
(1+283sX1+1255)
_ ~0.425

G22(s) = 15

+2s

where paralysis (EMG electromyogram signal response
for muscle relaxation) is normalized to unity, MAP
(Mean arterial Pressure) in mmHg, Ul(s) atracurium and
U2(s) isoflurane infusion rate are normalized to unity,
and time units are minutes [15].

In addition, the pharmacodynamic effect of atracurium is
usually modeled by a Hill equation:

A= S
Ve (V)
a=298%029
V,, = 040410017

6. Algorithm Description

In this paper we investigate thg wse of an additional
factor to the procedure design of fzzy controllers which
is the number of partitions within the fuzzy universe,
limiting in such way the interveption of an human-expert
merely, to define the boundaries of the fuzzy universe of
discourse. The parameter sets in this study. which consist
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of an entire set of fuzzy membership functions describing
the space of the input variables and rule sets, are coded
as concatenating strings of digits. The length of
chromosome is variable, i.e. the numbers of inputs fuzzy
sets and theirs parameters were determined by the GA.
while the number of output fuzzy sects and theirs
parameters were fixed to decrease the exccution time.
The membership functions used here are Gaussian of the
following form:

~((x-c)*726%)

,u.'(x) =1

Therefore, to code this function we need two parameters:
the center ¢ and the deviation &, these values are
mapped linearly between determined minimum (Pmin)
and maximum (Pmax) values according to the following

A=Pmin * b (Pmax-Pmin)

where A s the value of the parameter being coded and b
is the allele integer-baselvalue.

To illustrate this method, consider a system with two
inputs II, 12, and one output O, and assume that GA give
five Gaussian fuzzy sets for the first input I1, and three
for the second I2 to divide their spaces respectively. We
fix five fuzzy sets for the output space partition. Hence
negative medium (NM), negative small (NS), zero (ZE),
positive small (PS), positive medium (PM), for I1 and O
variable spaces, and negative (N), zero (ZE), positive (P)
for 12 variable space. The rule set contains (5*3) rules 10
account for every possible combination of input fuzzy
sets. Here, we assume that the peak of the membership
functions associated to the extremes are fixed, so, cight
alleles are reserved for the I1 variable and four alleles for
the 12 variable. The string representing the controlier is
integer-based, thus, the first 15 alleles which
representing the rules sct have values in the set {1,2,...,
Number of output sets (3)}, while the alieles representing
the membership functions have values in the set
{1,2,...,5}, see fig.4

| MN | SN | ZE | MP | SP
N 5 1 4 3 2
Z / 5 2 1 3
P 3 2 i 2 13
Fig.4 The rule base encode

However, the objective of the controller is to minimize
the error and reduce the size of the rule base, which has
more impact on the FLC performance. Indeed, these
factors are weighted and summed to assess the expression
of the fitness function, which is taken by the GA to
optimize the solutions.

7. Simulation Results for Anesthesia
Controller

This paper investigate the development of a suitable GA
technique for fuzzy design, with a smooth manner in

choosing the typical partition in the input and/or output
spaces. During simulations, we have noticed that due to
the random choice of the initial population. genetic
algorithms do not behave in the same way for every run.
We run the algorithm 8 times and according to these
runs we have noticed that the crror decreases and the
performance of the FLC gets better as the numbcer of
iterations and population size increase, fig.5 show that.
in wich the fitness function evolves througth the
generation number. In light of these considerations. the
values for population size. maximum number of
generations, probability of crossover (two point crossover
is used here), and probability of mutation are 100, 50. 0.3
and 0.03 respectively.
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Fig.5 GA performance

The GA is used to lead the knowledge base for a
multivariable fuzzy controller. The fuzzy controller is
then applied to the control of multivariable anesthesia.
including the simultaneous regulation of muscle
relaxation MR (expressed as a % of total paralysis) and
the depth of unconscious (controlled by MAP mesure) in
patient undergoing surgical operation. The model is
described clearly (section 5 ). A fourth-order Runge-
Kutta integration method was used with a sampling
interval of 1 minute
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Fig.6 Optimized knowledg bases
a. for MAP
b for MR

By using the best knowledge bases found by the GA
optimizer, which are described for both MAP and MR in
figure.6, the control surfaces within contineous and
smooth transitions which are provided from-a certain
amount of overlap of the fuzzy sets, are portrayed in
figure.7.
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7. control surfaces,
a. for MR
b. for MAP

The inputs MAP and paralysis with the corresponding
drugs are illustrated in figure.8, where the controller can
attain and maintain the control of anesthesia depth. by
adjusting the blood pressure and the paralysis rate.
adequately. To check robustencss, disturbances arc
applied (exemple, a skin incision can lcad to rapid
changes in blood pressure of more than 10 mmHg).
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Fig 7. Multivariable response.
aand b MAP response
cand d MR, showing interactions from MAP

8.Conclusion

The objective of this paper was to investigate the use of
genetic  algorithms as a tool for the design of fuzzy
controllers. The simulation results presented here, have
demonstrated the effectiveness of the proposed control
system to insure that the paticnt’s hemodynamics (MAP,
paralysis) remain stable and the patient remains
sufficiently anesthetized.

Based on these results, one can conclude that GAs are
valuable tools for the design of an FLC with exellent
robusteness and performance which improve by
automating the number of membership functions. By
introducing such additional degree of freedom, the user
will have more flexibility in the design.
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