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Abstract.'

This paper inve.ttiSales an obiective approach to the de:tign of fuzz.y controllers.'l'he approach ,tses an
inproving geneic algorithnt, a recenl search antl optinization teciniqie-to optintiz.t the pararret)).s of supen,isetl
fuzzy contrqller. Such parameters as the membershipft
n any c&se.t. A npemised controller is a controller
bounded, so it guarantee stability dnd that we can rel
algorithm. 'Ib achieve thi.t design, we have applied
biomedical process, namely, control of anesthesia. 'j

incorporating the conftol engineering methods in biomedicine resuils in superior accurate supen,ising
perfonnance.
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l. Introduction

Several studies have shown firzz1' logic control I ll, [2J
to be an appropriate rn€thodforthecontrol ofcomplex
continuous unidenrified or partially identified processes,
nutuy of which cannot easily be modeled in a
mathematical way. This is because unlike a conventional
ptoc€ss @ntroller such as a PID controller, no rigorous
mathematical model is required todesign agodtuzzy
controller (FLC) but a set of linguistic irformation rs
incorporated from hurnans experts. Forthatreason, the
FLC has been successfully applied in rnany complex
processes I3l, t4l, however, they experience a deficiencry
in knowledge acquisition, and rely to a great extent on
empirical and heuristic knowledge which generally,,
cannot be elicited. Among tbe problems to be resolved in
truzy controller design, are the determination of the
linguistic stale spac€, definition of the membership
functions and the derivation of the control rules, which
are in traditional method obtained by heuristic trial-and-
error approach based on analyzing process behavior, and
consequent iterative modtfication to obtain acceptabte
performance, and such methods are laboriousand time
consuming. These shortcomings have motivated the use
of an evolulionary algorithm [5] to design the FLC
enabling to create and modi$ its knorvledge base.

In this paper, $,e inve*igate the use of Genetic
AJgorithms (CAs) to the complere design of a
multivariable control of anesthesia rvith its two areas:
unconsciousness and muscle relaxation in surgi*rl
operation, attaining and maintaining in such way, the
control of depth of anesthesia.

This paper is stnrctured as follows: seclion 2 rwiews
the GA functioning principte in the search space In

section 3 and .l rre present the general concepl oftlre
FLC. and how GA is applied to rhe desigr of the FLC.
Section 5 describes anesthesia qstem. rvhile section 6
and 7 include algorithm description and sinrulatron
results. Finally rve summarize the paper in section g.

2. Brief Review of GA Optimizer

2.1 Principle of GA:
Recently, research has emphasized in optimizatlon

methods, which employ principles of evolution and
heredity from nature [6]. These algorithms search the
problem spac€ rvith a population of points and
probabilistic decisions.
The- GA of which the pseudocodeispresentedinFig.l
performs the optimization pr@ess rvith a populition of
individuals, e.rch of rvhich represents a search point in
lhe space ofporential solurions ro rhe problem lTl, tEl.

I n i t i a l i z e  p ( t )  : p c p u l a t i o n  a t  t i m e  t
e v a L u a t e  P  ( t )
w h i l e  ( n o t  t e r m i n a t e  c o n d i t i o n ) d o
beg in

t = t + l :  rncremenc gene ra t  i on
s e l e c t  P ( t )  f r o m  p ( t - l )
r e c o m b i n e  P ( E )

: a p p l y  g e n e t i c  o p e r a t o r
e v a l u a t e  P  ( t )

end
end

Irig I PseudocodeofGA

The population is randomly created andthen.evolved
toward better regiorr of the search space by nreans of
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simulating some of the process obsen'ed in nature

evolution, likc selection, cn)ssover and mutation

operations. First the GA maintains a population of

individuals, P(t)=x r (t),xz(t),$(t)'.... "xn(t) for iteration t'

each solution xi(t) is evaluated to glve measure ofits

frtness. The new population (iteration t+l) is formedby

selecting the more fit individuls to reproduce more'

Some members of the new popdation undergo

transfonnation like crossover operation (one ol more

crossing sites) which cr@te new individuals, by

combining parts from several individr.lals and unary

mutation operalor which creale nqv indivirhrals b)' 3

change in a single individlal. After some nurnber of

generations, the search converg€s and is successfirl, if the

beot individual represenB the global oflimum solution-

Dpspire ftal GAs require only information conceming

thp qudity of the solution, not d€rivative information or

cqnrplete knowlcdge of the problem, they suffer from the

tipe taken in evolution process, which imposes

restriction on the size of the poprlation and also the

number of generations required to run the GA to a final

solution. To alleviate this problem, parallel proc€ssing

t9l, tt0l can be emptoyed to reduce the execution time;

by using one-population and multiple processors 10

clivide the cvaluation task, or W separating

subpopulations on each processor lvhich develop

rndividual solutions

3. General ConcePt of the FLC

The basic configuration of the logic system considercd in

this paper is shown in ftg.Z- In what follows' a brief

description of each component and the basic ftzz1'

opcrations that it performs is presented.

3.1 Knowledge Bas€ conctructed with fuzy rules

The knowledge base for lbe fizrylogic system contains a

collection of fruzy IF-TI{EN nrles' The MISO IF-TIIEN

rute(s) are of the form

Ru'  IF  x ,  i s .4 t ,  and.  .x ,  i sAt , '  THENyis  C/ ( l )

p t ! , ^  , t1+c : ( r ' . v )  
=  P  . r ' ( x r ) * - - . *P  ^ ,  ( ' r " )  +  1" ,  ( . v )  (3 )

rvhere * denotcs the t-norm, s{rich in general.

corresponds 10 the coniunction 'min' or 'product'.

3.2 tr\tny Inference Engine
The fuzzy inference engine performs a mapping from

fitzrl *ts in V to frzzy serc in R based on rhe firzzl'IF-
THEN rules in the fuzzy rule base and the compositional
inference rule
t€t B be a fivzy set in V, then the fizzy relational

equation B o Ri were '.' is the suPslar composition.
results in M fi;r:zy sets. Using the t-norm operator yields

ta 6"p,(|)  
= sup,[ lB(x)* F ^l  ̂ -^^l-",  G,.t  ) l  (1)

Fig.2 A bla,k diagrum ol'basie l'uiz; logic systetrt

ln order to conbille the M fuzzy sets into one fizz1'set,

the t-norm can be employed and il results in

It  
".r^, 

, . . .*u ,(!)  
= l t  u"^r, (y)+ '+ l t  B"RtMr (y) (5)

where + denotes the t{onorm, the most commonly used

operation for + is 'max'. If we use the product

operation and choose + in (3) and (4) to be an algebraic

product, then the inference is calledproduct inference

Using the product inference, the equation (4) becomes

p ndt, 
(J)= supra, [lg (D u ri G ) .. P * G ) tt r, C]) 1 (6)

3.3 trhzzilier

The fuzzifier maps a crisp point r into a frzzy set B in

V. In general, there are two possible choices of this

rnapping [2] namely, singletorL or nonsingleton' ln tNs

pap€r, we use the singleton fttzzifter mapping i.e.,

lru(r) = 
{'o

3.4 Defuzzifier

for r=r'

for otlenvisc

The defirzzifrer maps frzz1 sets iu W to a crisp point rn

R. In general; there are different possible choices ofthis

mapping [2], among others, nraximum' center gravitv'

and center-ave rage defwzrfrer. In this paPer. we use the

center-average defirzzifier mapping- i.e..

w h e r e x = ( x r ,  , x . ) r  e V  c R ' a n d y  e W c R d e n o t e

the linguistic variables assmiated with the inpus and

output of the fwzy loglc system [ll. Ai andCi are labels

of the fiuzy sets in V and W, respectively, and i denotes

the number of input/sute of fttzzy logic system, i'e,

i=1,2,n, and j =1,2,...,M. Fttzzy rule (l) can be

implemented using fuzzy implication, which gives

A l x . x A j  - +  C t  ( Z )

which is a f,zzy set defrned in the prodrct spac€ V x W

Based on generalizations of implications in multivalued

logic, many fiu4 implicatiron rules have been proposed

in the frrzzy logic literature. ln this paper' we de6ne the

implication rule using the t-norm operator, given by

(7)
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wherel/ is the point in R at rvhich ;r", achieves its

nraxinttun value (assume that lt.j (yt ) = D.

3.5 F\rzzy Basis Fbnctions
The fuz4, logic systeln vith center-average defunifier
(8), proeluct inference (6), and singleton luzzifer (7), is
of the follorving form

Fig 3 GA optimization of the module

5. Anesthesia System Description

In order to identf the muscle relaxation proc6s,
and the unconsciousness process associated with drugs
[3], Pharmacologr comprises two main areas known as
pharmacoknetics and pharmacodynamics [14], [15].
Pharmacoknetics studies the relationship that exists
between dnrg dose and drug @ncentration in the blood
plasma as well as other parts of the body.
Pharmacodynamics, however, is concemed with the drug
concentration and the efrect produced. Inlightofthese
consi&rations, the linear pharmacoknetics, which
describe distribution of drugs into the blood, are given by
the following equation,

lraratwisl_ fcr rlsy ct2(r)l[{/l(.r) I
LM.4P JL o G22(tl ' luzr.st l

rvith

(8)

(e)

if rve fix the 1t n., (r, ) 
's and view the yr 's 

as adjustable

parameters, then the equation (9) became :

t'(.!) = o'6(L) (r0)

s'here d = ()'', ..-vt)t is a parametervector, and d(x) =

1rI'1r;. ...cfr/19)r is a regressive vector rvith the regressor

dr(.r) defiued as

( l t )

rvhich are called fuzzv basis functions (FBF's) and
these FBF's are universal approxinrators [21. We can fix
all the parameters in d/ (x) at the begnning of the FBF

cxpansion dcsign procedure. so that lhe only frce design
parametersn le0 , .

4. Interaction Of The FLC &Iodule With GA
0ptimizer

Fig.3 shorvs the interconnection of the FLC,
simulation model. and GA optimizer tl2l, t9l. The FLC
operates the simulation model of the plant to be
controllcd. An individual of the GA population
represents one trial set of fuzzy membership firndions
and nrles I l]. So the GA opimizer sends a parameter
assigrment (an individual) to the FLC which determines
its knorvledge base. The m@l is reset to its initial
conditions. During control operatior\ the values of state
variables are sanrpled with some sampling time. while
the FLC issues control commands to the simulation
nrodel.

Gl  l (s )  =

G l 2 ( s )  =

I e- '( l  + 10.64s)
( l  +  308.s ) ( l  +4  8 ls !1+  34 .36s)

027.e- '
( l+283sXl  +1 .25s)
_ l  <  . _ o . a 2 !

G22(s\ =
I  + 2 s

rvhere paralysis (EMG electromyogram signal r€sponse
for muscle relaxation) is normalized to unity, MAp
(Mean arterial Pressure) in mmHg Ul(s) atracurium and
U2(s) isoflurane infusion rate are normalizedtounity,
and time units are minutes [51.
In addition. the pharmacodynamic effect of atracurium is
usuallv modeled by a Hill equation:

Y =  V "
V" + (Vro).

a = 2.98 r .  O.29

V s o = 0 . 4 0 4 t 0 O 1 7

5. Algorithm Description

In this paper we investigate thg Dse ofan additional
factor to the procedrre design of ttzzy conrrollers which
is the number of partitions wilhin the firzry universe,
limiting in such way the intervention of an human+xpert
nrerelv, to detine the boundaricr of tlre finzy universe of
discourse. The parametgr rett in this study. which consis
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of an entire xt of frtzzy membership functioru derribing

the space of the input variables and rule sets, are coded

as concatenating strings of digits. The length of

chromosome is variable, i.e. the numbers of inputs fuzzy

sets and theirs paramelers were &termined b1'the GA
rvhile the number of output fizzy sets and theirs
parameters were fixed to docrease the execution tinre

The membership funclions used herc are Gaussian of thc

following form:

P'(x) = 
"-((x-c) ' /26')

Therefore, to code this function we need two parameters:

the center c and the deviation a', these values are

mapped linearly between determined minimum (Prnin)

and marimum (Pmax) values according to the follorving

A=Pmln * b (Pmax-Pmin)

rvhere A is the value ofthe parameterbeing codedand b

is the altele integer{ase.lvalue.
To illustrate this metho4 consider a system with trvo
inprts Il, 12, and one output O, and assume that GA give

five Gaussian fis4 *ts for the first inpt Il, and three
for the second 12 to divi& their spaces respectively. We

fix five fuzzy sets for the outprt space partition. Hence
negative medium (NM), negative small (NS), zero (ZE),
positive small (PS), positive medium (PM), for Il and O

variable spac€s, and neCettve (NI), zero (ZE), positive (P)

for 12 variable space. The nrle set conhins (5+3) rules to

account for every possible combimtion of inprt fuzzy

scts. Here, we assume thatthepeakof themembership
functions associarcd lo the exlremes are fixd so, cight
alleles are reserved fctr the Il variable and four alleles for

the 12 variable The string repres€nting the controller is

integertased, thus, the first 15 alleles which

representing the nrles set have values in the set { 1,2,.. ,
Number of ourput sets (5)), while the alleles representing

the membership functions have values in the set

{1 ,2 , . . . ,5 } .  see  f ig .4

choosing the $'pical partition in tlte ittput and/or outpul

spaces. During simulations. rve have noticed that due to

the random choice of the initial population. geuetic

algorithms do not behave in the same way for eveD nrn.
We run the algorithnr 8 tinres and according lo these
runs we have noticed that the crror decreases and the
perfornrancc of the FLC gets better as thc nunrbcr of
iterations and population sizc incrcasc. fig.5 shorv thal.
in wich the fitness function evolves througth the
generatton number. In light ofthese considerations. the
values for population size. maxitrrunr ttumbcr of
generations, probability of crossover (tlvo point crossover
is used here), and probability ofrnutation are 100, 50. 0.3

and 0.03 respectively.
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Fig.5 GA perfornrance

The GA is used to lead the lorowledge base for a
multivariable fi.ury controller. The fuzzy controller is
then applied to the control of multivariableanesthesia.
including the simultaneous regulation of nruscle
relaxation MR (expressed as a7o oftotal paralysis) and
the depth of unconscious (controlled by MAP mesurc) in
patient undergoing surgical operdtion. The model is
described clarrly (section 5 ). A fourth-order Runge-
Kutta integratiou nrethod was used rvith a santplittg
interval of I minute

E"
E t o
i o

Fig 4 The rule base encode

However, the objective of the controller is to minimize

the error and reduce the size of the rule base, which has

more impact on the FLC performance. Indee4 thcse

factors are weighted and summed to assess the expression

of the fitness function, which is taken by the GA to

optimize the solutions

7. Simulation Results for Anesthesia
Controller

This paper investigate the development of a suitable GA
technique for finzy design, with a smooth manner in
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Fig.6 Optimizcd knowledg bases
a. forMAP
D forMR

By using thc best knowledge bases found by the GA
optimrzer, which are described for both MAP and MR in
ftgure.6, the control surfaces within contineous and
smooth transitions which are provided from,a certain
amount of ovcrlap of the finzy sels, are portrayed in
figure.7

c}sqeEflnl.hl

Ch{geE(rc(mm{gl

7 control surfaces,
a. tirr MR
6. for MAP

The inputs MAP and paratysis rvith the conespondirrg
drugs are illustrated in figure-8, where the controllcr can
attain and nraintain the control ofanesthesiadepth.br
adjusting the blood pressure and rhe Frralysis rate.
adcquately. To check robustcncss. disturbances arc
applied (exemple, a skin incision can lcad to rapid
changcs in blood prcssure of more than l0 nrnrHg)

c

Fig 7 Multivariable responsc
a and b MAP response
c ard d MR, showing irrteraclions liom MAp

S.Conclusion

The objectile of this p.lper rvas to investigate the use of
genetic algorithms as a tool for the design of fuzzr
controllers. The simulation results presented here, have
demonstrated the effectiveness of the proposed control
systenr to insure that the patient's henrodynamics (MAp,
paralysis) remain stable and the pttient remains
suff ciently anesthetized.
Based on these results, one can conclude that GAs are
valuable tools for the design of an FLC rvith exellent
robusteness and perfornrance w{rich improve br,
automating the number of nrembership functiohs Bi,
introducing such additional degree of freedonr, the user
rvill have more flexibility in the design
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