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ABSTRACT 

This paper, which is focused on bearing damage detection by 
the accelerated aging processes, presents two different wavelet 
transform applications to find the potential defect. This 
potential defect is compared with the faulty case and is used to 
extract the origin of the bearing damage characteristic that 
develops during time.  Therefore, it exposes the fundamental 
cause of the bearing damage from the vibration signals for 
healthy case.  
 

I.  INTRODUCTION 
The demand for monitoring and fault diagnosis of process 
dynamics and sensors in industrial systems has increased the 
efforts to develop new analysis techniques. The main goal of 
this technological improvement is to obtain more detailed 
information contained in the measured data than had been 
previously possible. Standard digital signal processing 
techniques, such as time series statistics, correlation analysis 
and fast Fourier transform (FFT) have been used to detect 
faults in system components [1].  In this sense, machineries 
that operate in a stationary mode are generally analyzed 
with standard Fourier transform techniques. When a system 
is non-stationary or undergoes a transient, the Fourier 
technique does not provide proper information about the 
signals.  The analysis of non-stationary signals should be 
performed using time-frequency (short-time Fourier 
transform, STFT) or time-scale (wavelet transform) 
techniques [2, 3].  The wavelet transforms can be used for 
localized analysis of signals continuously as a function of 
time [4].  

The early detection of anomalies in the electrical or 
mechanical parts of electric motors is very important to the 
safe and economic operation of an industrial process. In 
literature several studies have been conducted to identify the 
cause of failure of induction motors in industrial 
applications. More than fifty percent of the failures are 
mechanical in nature, such as bearing, balance and 
alignment related problems [5, 6].  

This paper presents an alternative approach to reveal the 
fault developing that is based on manufacturing defects. For 
this purpose, continuous and discrete wavelet analysis 

methods are applied to vibration signals of 5-HP induction 
motor subjected to bearing fluting or electrical aging tests. 
Hence, application methods are compared with each others 
in terms of the findings appeared in the healthy bearing 
condition. 

 
II. CONTINUOUS AND DISCRETE WAVELET 

TRANSFORMS 
The use of wavelet transform is particularly appropriate 
since it gives information about the signal both in frequency 
and time domains. Let f(x) be the signal, the continuous 
wavelet transform of f(x) is then defined as  
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and a,b 0≠∈ a  R, . Also, it provides the admissibility 
condition as below 
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And for this reason, it is  
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Here ( )ωψ  stands for the Fourier transform of ( )xψ . The 
admissibility condition implies that the Fourier transform of 
( )xψ  vanishes at the zero frequency. Therefore ψ  is called 

as a wave or the mother wavelet and it has two 



characteristic parameters, namely, dilation (a) and 
translation (b), which vary continuously. The translation 
parameter, “b”, controls the position of the wavelet in time. 
A “narrow” wavelet can access high-frequency 
information, while a more dilated wavelet can access low-
frequency information. This means that the parameter “a” 
varies with different frequency. The parameters “a” and “b” 
take discrete values,  a = j

0a ,  b = nb0
j

0a ,  where n, j ∈ Z, 
a0 >1, and b0 >0. The discrete wavelet transformation 
(DWT) is defined as [7,8] 
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However, S. Mallat introduced an efficient algorithm to 
perform the DWT known as the multi-resolution analysis 
(MRA) [8]. The MRA is similar to a two-channel sub-band 
coder in high-pass (H) and low-pass (L) filters, from which 
the original signal can be reconstructed [8]. The low 
frequency sub-band is referred to as ‘approximation Cai’ 
and the high-frequency sub-band by ‘detail Cdi’. Thus, the 
signal may be reconstructed as  
S =Can + Cd1 + Cd2 +…+ CdN at the Nth stage. Finally, in 
this study, signal reconstruction for three stages is given as  
 

S =C a3 + Cd1 + Cd2 + Cd3. 
 

III. ELECTRICAL DISCHARGE MACHINING AND 
DATA ACQUISITION 

In order to simulate the electrical discharge from the shaft 
to the bearing, a special test setup was designed [9]. A 
schematic presentation of this Electrical Discharge 
Machining (EDM) for the bearing elements is shown in 
Figure 1. At each aging cycle, the motor was run at no load 
for 30 minutes, with an externally applied shaft current of 
27 Amperes at 30 Volts AC.  

 
The EDM aging was followed by thermal aging in order to 
accelerate the aging process. After each cycle of 
accelerated aging, the test motor was put on a motor 
performance test platform. From the experimental setup, 
high frequency data with a sampling frequency of 12 kHz 
was acquired for the motor currents and voltages, rotor 
speed, torque and six vibration measurements There are 
eight measurement sets so that one healthy and seven aged 
cases. 
 
  
 
 

 
 

 
 
 
 
 
 
 
 

 
Figure1.  Schematic of the electrical motor bearing EDM 
setup. 
 
 

 
 
 
 
 
 
 
 
 
 

 

 

Figure 2. Motor load testing and data acquisition system: 
Experimental set-up configuration; and Cross-section (A-B) 
at short end to show sensors S1 and S2. 

 

Figure 2 shows the experimental setup for processing the 
measured electrical and vibration data and then transferring 
them to a host personal computer. There are six 
accelerometers used in this set-up for independent vibration 
measurements. As shown in Figure.2, sensors S1 and S2 
are placed in plane A-B.  

IV. APPLICATION TO VIBRATION SIGNALS 
Most effective sensor information for mechanical vibration 
that represents bearing damage come from sensors S1 and 
S2 as shown in Figure 2. These accelerometer type vibration 
sensors are almost identical sensors for each other. 
Therefore, only sensor-S1 is considered for the analysis. 
Time series plots of vibration signals for the healthy and 
aged motor cases which come from the sensor S1 are as 
shown in Figure. 3. It is clearly notable that vibration 
amplitude is increasing while aging progresses and this 
gives a correspondence of increasing standard deviation. 
 
 
 
 



 
 

 

 

 

 

         (a)    (b) 
Figure 3.  Vibration signal time series for a) healthy and b) 
aged motor. 

To extract the changing of the frequency components of the 
signal with the aging, the Fourier transformation is 
performed and the power spectral densities of these signals 
are plotted as shown in Figure. 4. 

 

   

 

 

 

 

          (a)    (b) 
Figure 4. Power spectral densities of vibration signals for a) 
healthy and b) aged motor. 

Comparing these figures it is shown that high frequency 
components occur between 2-4 kHz, which denotes the 
bearing damage. 

 

APPLICATION OF CONTINUOUS WAVELET 
TRANSFORM 

Continuous wavelet transform (CWT) is applied to the 
vibration signals to see how scale or frequency changes with 
time. These signals were decomposed into 256 scales using 
mother wavelet type of symlet. The CWT coefficients are 
shown in time-scale plane for healthy and aged motor in 
Figure. 5-a and 5-b.  Comparing these figures it can be 
observed that bearing damage effect shows itself at low 
scales.  Hence, while it can be observed that the rare 
variations are at the low scale values, high scale values 
shown as Figure. 5-a, and 5-b indicate some periodical 
variations at low frequencies. 
If the first scale variation is taken outside to plot it 
individually as shown in Figure. 6-a, it gives the high 
frequency components represented by very small 
amplitudes.  Fig. 6-b is also due to the first scale of the 
CWT for aged case.  This is also related to big amplitudes of 
the bearing damage.    
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 (b) 

Figure 5. Absolute values of continuos wavelet transform 
coefficients for scales 1, 2, 4, 8, 16, 32, 64, 128, 256 of  
vibration signals for a) healthy and b) aged motor. 

 

Very small amplitudes located at high frequency region of 
the overall spectrum can be extracted to indicate as shown in 
Figure. 6-a at low scale values. When compared with the 
results of Figure.4-a, one advantage of the CWT over the 
STFT can be easily determined. Also, Figure.6-b shows the 
extra amplitudes which are caused by the bearing damage 
between the 2-4 kHz. The effect of the bearing damage 
denoted between 2-4 kHz are observed by the big 
amplitudes which are several hundred times greater than 
amplitudes of the healthy case at same frequency interval, 
that is 2-4 kHz. Therefore, this study indicates an advantage 
of CWT over the STFT in terms of getting more sensitive 
fault detection and hence, this possibility can be represented 
as an important contribution for this study. 
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(b) 

Figure 6. Power spectral densities of scale 1 of vibration 
signals for a) healthy and b) aged motor. 

 
APPLICATION OF DISCRETE WAVELET 

TRANSFORM 
The vibration signal that comes from sensor S1 is 
decomposed into three frequency sub-band levels as shown 
in Table 1, corresponding to the sampling frequency of the 
vibration signals. 
 

Table 1.  Three frequency subbands to be analyzed 
vibration signal. 

 
Subband 

Levels Approximations Details 

1 a1: 0-3000 Hz d1: 3000-6000 Hz 
2 a2: 0-1500 Hz d2: 1500-3000 Hz 
3 a3: 0-750 Hz d3:   750-1500 Hz 

 
Considering  results of the Table 1, reconstructed signal can 
be reperesented by s=d1+d2+d3+a3, and signal 
decompositions in the form of the subbands are shown by 
Figure 7 and 8 for the healty and aged motor cases. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Also, spectral variations of the vibration signals are shown 
for the healthy and aged cases. These variations can be seen 
by Figure 9. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7. Vibration measurement of the healthy motor 
case and its sub bands. 

 
Figure 8. Vibration measurement of the aged motor  
and its sub-bands. 

 
Figure 9. Spectral Variations for the healthy and aged 
cases of the motor bearing. 
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As seen in the Figure 9, additional frequency components 
are observed in the frequency range 2-4 kHz. This 
frequency band is a feature indicating the bearing damage. 
However, for healthy case of the related spectral variation, 
this frequency band is at the zero-level, namely there is no 
frequency component in the range 2-4 kHz.  But, this is not 
possible in terms of the physical meaning, so any 
manufactured system is not perfect. To find the origin of 
this result, the spectral variation for first detail sub-band of 
the vibration signal in the healthy case is examined.  Very 
small amplitude variations, in the frequency range 2-4 kHz, 
which is the main cause of the bearing damage, are easily 
detected. This detection is interpreted as a potential defect 
of the bearing damage. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

As seen from the Figure 10, the existence of the bearing 
damage characterization is extracted as a hidden information 
from the third detail sub band of the vibration signal for 
healthy case. 
 

V. CONCLUSIONS 
This research reflects two different aspects of bearing 
damage characterization. The fist one is that the bearing 
damage property is characterized between 2-4 kHz in the 
frequency domain. As a second one, its existence depends 
on the manufacturing defect and it is observed as a 
primitive cause of the aging case. Hence, this pre-existing 
condition is interpreted as the main cause of the 
development of bearing damage under the aging process. 
This result is very important in tracking and detecting the 
bearing damage property during the operation of the motor.  
Thus, this method can be implemented as a real-time 
condition monitoring system in future.  

In terms of the wavelet transform applications, both of the 
continuous and discrete wavelet transform show the similar 
bearing damage characterization, which is indicated in the 
frequency interval of 2-4 kHz, through the vibration signals 
in the healthy case. This characterization can be interpreted 
as a common feature. However, it can be said that the CWT 
reflects the potential case, which covers the overall 
frequency range of the vibration signal for healthy case, 
while the DWT discriminates the frequency band of 2-4 
kHz regarding to bearing damage from the original 
vibration signal of the healthy case.  In this manner, as seen 
in Figure 6-a and Figure 10, the CWT detects the existence 
of the  defects which will be appeared during the time by 
means of the degradation and the DWT also isolate this 
frequency band related to the bearing damage. As a result 
of this research, in the hybrid usage of the CWT and DWT, 
this new approach provides a new possibility as a fault 
detection and isolation method. 
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Figure 10. Spectral Variation of the first detail sub
band of the vibration signal for the healthy bearing 
case. 


