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   ABSTRACT 

In this study, we investigate a novel neural network 
for solving nonlinear convex programming problems 
with general linear constraints. Furthermore, we 
extend this neural network to solve a class of 
variational inequalities problems. These neural 
networks are stable in the sense of Lyapunov and 
globally convergent to a unique optimal solution. The 
present convergence results do not requires Lipschitz 
continuity condition on the objective function. These 
models have no adjustable parameter and have a low 
complexity for implementation and converge to an 
exact optimal solution. 
 
 

I. INTRODUCTION 
 

Consider the following nonlinear programming problem 
 
            Minimize       )(xf  

            Subject to   
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where RRf n →:  is a continuously differentiable and 

convex ,nmRA ×∈  ,nrRB ×∈  mn RbR ∈∈ ,,hl and 

.rRc∈  
It is well-known that nonlinear programming problems 
arise in a wide variety of scientific and engineering 
applications including regression analysis, image and 
signal processing, parameter estimation, filter design, 
robot control, etc [1]. Many of them have time-varying 
nature and thus have to be solved in real time [2,3]. 
Because of the nature of digital computers, convivial 
numerical optimization techniques may not be effective 
for such real-time applications. As parallel computational 
models, neural networks possess many desirable 
properties such as real-time information processing [4]. In 
particular, recurrent neural network for optimization have 

received tremendous interests in recent years. At present, 
there are several recurrent neural networks for solving 
nonlinear programming problem. Kennedy and Chua [5] 
presented a primal-dual neural network. Because the 
network contains a finite penalty parameter, thus it 
converges to an approximate solution only. To overcome 
the problem of the penalty parameter, a few primal-dual 
neural network with two and one-layer structure were 
developed [6-8]. It is well-known that neural networks 
with a low model complexity and fast convergence rate 
are very desirable [9,10]. In [11] Xia and Feng introduced 
a modified neural network for quadratic programming. 
Since in many real-world optimization problems, one has 
to deal with nonlinear optimization, the object of this 
study is to propose a primal-dual neural network for 
solving (1) and its dual problem. More exactly, the 
proposed neural network has one-layer structure without 
the need of computing an inverse matrix. Not only the 
state trajectory of proposed neural network converges 
globally to an equilibrium point, also compared with the 
existing convergence results, the present results do not 
require Lipschitz continuity condition the objective 
function. Furthermore we extend the proposed neural 
network to solve a class of monotone variational 
inequality problems. 

 
 

II. NEURAL NETWORK MODEL 
 

According to the Karush-Kuhn-Tucker (KKT) conditions  
for (1)[1],  we see that *x is an optimal solution of (1) if 
and only if there exist mRy ∈*  and rRz ∈* such that 

Tzyx ),,( *** satisfies the following conditions:    
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Then (2) can be rewritten as in a compact form 
,))(( uuWuP =−  where rmnT Rzyxu ++∈= ],,[  

and .],)(),([)( T
X zyxPuP +=  

In this paper, we propose a recurrent neural network for 
solving (1), with its dynamical equation being given by 
State equation: 

        )())(( uHuWuPu
dt
du

=−+−=                    (3) 

Output equation: 
         )()( tDutx =  

where rmnRu ++∈ is a state vector, nRx∈ is an output 
vector, nnRIOID ×∈= ],,[ is an unit matrix, and 

)( rmnRO +×∈ is a zero matrix.  
 
 

III. STABILITY AND CONVERGENT RESULTS 
 
Lemma1:  Let }.0,|),,({ ≥∈∈==Ω ++ yXxRzyxu rmnT  

For any initial point 0
m ru X R R+∈ × ×  there exists a 

unique solution Ttztytxtu ))(),(),(()( = for (3).  
Proof: P  is locally Lipschitz continuous then according 
to the local existence and uniqueness theorem of ODEs 
[12], there exists a unique continuous solution of (3) for 

0( , ).t T  We will show that ( )u t is bounded and the local 
existence for solution of (3) can be extended to global 
existence.  
Theorem 1: Assume that ( )f x  is strictly convex and 
twice differentiable. Then the proposed neural network of 
(3) with the initial point 0u ∈Ω  is stable in the Lyaponov 
sense and globally convergent to the stationary point 

* * * *( , , ) ,Tu x y z=  where *x is the optimal solution of 
(1).  

Proof:  We define the following Energy function:       
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2
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Let rmnRS ++⊆1 be a neighborhood of *u . We show 
that )(uV  is a suitable Lyapunov function for dynamic 
system (3).  By the results give in [13], we know that                                
         2)()()( uHuHuW T ≥−                                       (4)                        

         .0))()(())(( * ≥−−−+ uGuHuuuH T                   (5)   
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then from theorem 3.2 of [14],      
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where )(uW∇  denotes the Jacobian matrix of .W        
Then  
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From (5) we can write                   
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Thus 
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dt
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Since )(uW∇  is positive semidefinite then              

0)()( * ≥− uWuu T  and 0)()()( ≥∇ uHuWuH T  
then      
 

.0)()()()()()( * ≤∇−−−≤ uHuWuHuWuu
dt

udV TT   (7) 

                                                                                              
Then the function )(uV  is an Energy function of (3). 
From (7), )(uV is monotonically nonincreasing for all   

.0tt ≥   

It is easy to see that )}()(|{ 0uVuVRu rmn ≤∈= ++φ  is 
bounded since  
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therefore .∞=T   
Thus from positively invariance principle [12], 
trajectories )(tu  of (3) converge to ϑ  as ,+∞→t  where 



ϑ  is the largest invariant set in 
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 To prove converse, let Π∈= Tzyxu )ˆ,ˆ,ˆ(ˆ , then 
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The positive-definiteness of )ˆ(2 xf∇  implies that 
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where *ˆ)1( xxx µµµ +−= ,  for all 10 ≤≤ µ . It follows 

that *ˆ xx = , thus 0ˆ =− cxB , i.e. .0
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following form 
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Since *ˆ xx = , it is equivalently written as bellow                                        
.0)ˆ()ˆ( * =−− bxAyy T                                                 (9) 
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Figur 1. Simplified architecture of the neural network 
model (12). 
 

Therefore 0=
dt
du  if and only if .0=

dt
dV    

Then the proposed neural network in (3) is globally 
convergent to the optimal solution of (1). 
 
IV. MONOTONE VARIATIONAL INEQUALITIES 

PROBLEM 
 

Consider the following variational inequalities problem 
with general linear constraints:   
 
       0)()( ** ≥− xFxx T  for all  ,1Ω∈x                (10)                  

where nn RRF →: is continuously differentiable and 
}.,,|{1 XxcBxbAxRx n ∈=≥∈=Ω  It is well-known 

that Xx ∈*  is a solution of (10) if and only if there exists 
),( ** zy such that Tzyxu ),,( **** = is a solution of the 

following variational inequalities problem: 
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According to the projection theorem [15], we see that (11) 
can be formulated as ,))(( uuUuP =−  where 

.],)(),([)( T
X zyxPuP +=  

 
Thus, as extension of the proposed neural network in (3)  
we propose the following dynamical equation for solving 
problem (10) as well. 
State equation: 

        ))(( uUuPu
dt
du

−+−=                                  (12) 

Output equation: 
         )()( tDutx =  

where rmnRu ++∈ is a state vector, nRx∈ is an output 
vector, nnRIOID ×∈= ],,[ is an unit matrix, and 

)( rmnRO +×∈ is a zero matrix. The proposed neural 
network can be implemented by a circuit with a single-
layer structure as shown in Figure. 1 
From the analysis of Theorem 1, we get the global 
convergence result on the neural network in (12). 
   
Theorem 2:  Assume that F is differentiable and strictly 
monotone for all Xx∈ .  Then the neural network model 
(12) with the initial point 0 0 0 0( , , )Tu x y z=  is globally 

convergent to the stationary point ),,,( **** zyxu =  

where *x the optimal solution of (10).  
 
 

 
 
 Figure 2. The transient behavior of )(tx using the neural 
network model (3) for example 1. 

 

V. SIMULATION RESULTS 
 
In this section, we discuss the simulation results through 
two examples. The simulation is conducted in MATLAB 
with the 4th order of Runge–Kutta technique. We use step 
size 0.003 and the stopping criterion is 10* 10||)(|| −≤− utu  
in all our run. 
 
Example 1: Consider the following nonlinear 
programming problem 
 
Minmize    21
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Subject to      221 −≥−− xx  

                            221 −≥− xx  

                            23 21 −=− xx , 

                             .10 ≤≤ x  
 
This problem has an optimal 
solution Tx )782.0,346.0(* =  (three effective digits). Note 

that )(2 xf∇  is positive definite on nR+ . Theorem 1 

guarantees that neural network model (3) converges to *x  
globally. Figure. 2 displays the transient behavior of )(tx  

with five initial point where Ty )1,1(= and 1=z  are 

fixed. All trajectories converge to optimal solution *x  
and Ty )0,0(* = and 316.0* =z . 
 
Example 2: Consider the nonlinear variational inequality 
problem (10). The mapping F  and the constraint set 1Ω  
defined by  
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and },,0,1|{ 43211 hl ≤≤≥+=+∈=Ω xxxxxRx n  

where T)1,0,0,1.0(=l and .)10,10,10,10( T=h  This 

problem has one optimal solution .)1,0,0,1(* Tx =  All 
simulation results show that the proposed neural network 
(12) convergent Tzyx ),,( *** where 0* =y and .0* =z  

Figure 3, show transient behavior  )(tu  and ||)(|| *utu −  
with six and ten random initial point, respectively. 
 
 



 
(a) 

 
(b) 

 
Figure 3. Simulation results of the neural network model 
(12) for example 2. (a) Transient behavior of )(tu with six 
initial points. (b) Transient behavior of the norm 

||*)(|| utu −  with ten initial points. 
 

CONCLUSION REMARKS 
 

We have proposed a recurrent neural network model for 
solving nonlinear convex programming problems with 
general linear constraints. It is shown here that the 
proposed neural network is stable in the sense of 
Lyapunov and globally convergent to an optimal solution 
under strictly convex condition of the objective function. 
This neural network has a simple single-layer sruture and 
does not have any adjustable parameter then it is very 
simple to use. The simulation results have demonstrated 
globally convergence behaviors and characteristics of the 
proposed neural network for solving several nonlinear 
programming problems.   
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