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Abstract 

In this paper, a new method is proposed to determine 

parameters of some types of fractional order models to 

represent a system dynamics using its step response. The 

model structure is assumed to have rational commensurate 

order as = M/Nα . By this assumption infinite terms of the 

model step response is converted into finite terms limited to 

N . The proposed method is practically applicable on all 

fractional order model structures due to the order 

approximation imposed by the limited precisions in 

available computational tools. 

1. Introduction 

Fractional calculus is an old mathematical topic which has been 

discussed by some researchers such as [1] and recently has been 

used to describe some physical phenomena reported in the 

processes like electromagnetic [2], electromechanic [3], heat 

transfer [4], biology [5], and so on. 

Identification of fractional order systems is a complicated task 

since one needs to determine both fractional orders and model 

parameters. Also due to the infinite memory property, it would 

be difficult to estimate order of these systems from their time 

responses. In this paper a new identification method in time 

domain is proposed which is based on approximation by rational 

order transfer functions. The proposed method eliminate 

necessity of truncation in the calculation of the fractional order 

models output which is the main source of the approximation 

error usually encountered in the simulation of the fractional 

order models. 

2. Conversion of Infinite Terms of a Response to 

Finite Terms 

We study a special case of fractional order model structures that 

have rational commensurate order as /M Nα = . In practice, 

when identification is accomplished using computational tools 

with limited accuracy, orders would be rational and thus the 

present discussion would be helpful for such applications. 

2.1. Simple Pseudo Pole 

First we consider a single pseudro pole fractional order model 

structure which is described as 
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The summation part of (2) is expanded as below 
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By defining ( )R s  as follows 
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one can write 
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2.2. Double Pseudo Poles 

Let us know consider the following model structure 
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From partial fraction expansion one can write 
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Similar to the case of single pseudo pole, (7) can be written as 
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Above mentioned equations can be simply extended to any 
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commensurate fractional order model structures. 

3. Identification Procedure 

Time domain identification using step response is one of the 

commonly implemented methods especially in industrial 

processes. This method has been discussed in some works like 

[6], [7], and [8]. Furthermore, the step response model has been 

widely used to tune parameters of integer or fractional order 

PIDs for example using Ziegler-Nichols rules. 

The proposed identification procedure is discussed for different 

common cases in the following subsections. 

3.1. Single Pseudo Pole Fractional Model with Known 

Order 

Different signals can be considered as the exciting input in the 

proposed time domain identification. We use the unit step input 

at the moment and consider a simple pseudo pole fractional 

model structure as (1). Thus from (5), one can write 
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or equivalently, 
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Multiplying (11), by 
Is −

 and applying (4), result in 
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Using inverse Laplace transform one obtains 
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where ( )Iy −  is the thI  time integral of y  from zero to t  and 

could be determined for instance using the trapezoidal 

numerical integration method. 

Now one can apply the least squares estimation approach to the 

following linear regression model 

 ( ) ( ) ( ) ( )I Ty t t tϕ θ ε− = +  (14) 

where 
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In (14), 
( )Iy −

 is linear with respect to parameters θ , though 

the model parameters K  and p  are appeared nonlinearly in 

θ . When θ  is determined, the model parameters K  and p  

are calculated through a procedure which is explained later. 

Let choose J  points from the unit step response of the process 

where J N> . Then construct matrix Φ  and vector ϒ  from 

the selected points and formulae in relations (13) and (15). 
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The following cost function is minimized to determine θ . 

 ( ) ( )
1

2

T
T TV θ θ= ϒ − Φ ϒ − Φ . (17) 

Consequently the unknown parameters θ  are obtained as below 

 ( )
1

T Tθ
−

= Φ Φ Φ ϒ . (18) 

Notice that the uniqueness of the solution relates to non 

singularity of matrix TΦ Φ . 

3.2. Single Pseudo Pole Fractional Model with 

Unknown Order 

When the order of the fractional system is unknown, performing 

an optimization process is necessary to approximate an 

appropriate model for the true system. The related stages could 

be described as follow 

S1. First select an integer number N  (larger N  improves the 

accuracy in the expense of computational requirement). 

S2. The optimization algorithm is performed for different values 

of [1, 2 ]M N∈  (according to the commensurate order's 

stability range). 

S3. Order α  is approximated by a rational number /M N . 

S4. According to some specified criteria like minimizing V  in 

(17), the best model is chosen from 2N  calculated models. 

S5. If none of the calculated model has desired accuracy, then 

increase value of N  (this is equivalent to decrease α ) and 

return to S2. 

Nazarian and his colleagues showed that the computer's round 

off errors would limit the process for smaller values of 

commensurate order α  [9]. 

3.3. Double Pseudo Pole Fractional Model with 

Known Order 

Let the model structure be as the one discussed in (6) to (9) 
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Applying the unit step input to the system and performing the 

same calculation described in subsection 3.1 result in (14) with 

the following ϕ  and θ . 
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and 
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The unknown parameters θ  are determined from (18). 

1

Np  and 2

Np  can be determined from the last relation in (22). 

Then 1K  and 2K  are calculated from obtained values of 1θ  and 

2θ . Since there are redundancies in calculating 1K  and 2K  

from 1θ  and 2θ , one may use all rows of 1θ  and 2θ  along with 

an optimization algorithm to determine the most proper values 

for 1K  and 2K . 

In subsequent sections the proposed method has been applied to 

estimate unknown parameters of the mentioned fractional model 

structures using the unit step response of a given system. 

4. Single Pseudo Pole Examples 

Consider the following stable fractional order system 

 
1.6

( ) 3
( )

( ) 2

Y s K
G s

U s s p sα
= = =

− +
 (23) 

4.1. Noise Free Case 

Let assume that the fractional order α  is unknown and the 

order accuracy is selected as 0.2. Therefore N  should be 5 and 

M  would change from 1 to 10. The unit step response of the 

system is calculated using Mittag-Leffler function evaluated 

with accuracy 41e −  (Fig. 1). 1000 points of the step response 

selected logarithmically between 0.1 to 10 seconds were used to 

estimate the unknown parameters. Geometrically spaced 

samples make less numerical problems in calculation of 
1( )T −Φ Φ . 

 

Fig. 1. The unit step response of the system (23). 

The integration order I  is set to zero. Tables 1 and 2 show the 

obtained results. Here, only two first rows of the estimated θ  

were used to calculate the model parameters K  and p . Any 

other choice of two rows of θ  results in almost similar values 

for these parameters. 

4.2. Adding Gaussian Noise 

As the noisy case, a random number generated by a normal 

distribution function with zero mean and variance 0.01 has been 

added to each calculated output sample. The resulted output 

signal is depicted in Fig. 2. The same estimation procedure as in 

the previous case was carried out here. The estimated 

parameters are listed in Table 3. 

Table 1. Noise free estimation for different orders. 

M  N  α /= M N V  K  −p

1 5 0.2 15.11 49.4 3.95 

2 5 0.4 8.40 -3.59 4.07 

3 5 0.6 4.04 -0.94 4.58 

4 5 0.8 98.64 -0.05 98.64 

5 5 1.0 2.29 0.74 -3.73 

6 5 1.2 13.60 2.18 0.92 

7 5 1.4 2.67 2.20 0.75 

8 5 1.6 1.2e-6 3.00 2.00 

9 5 1.8 56.02 2.27 1.64 

10 5 2.0 166 1.74 1.50 

Table 2. Noise free estimated θ  for 8M = , 5N = . 

θ  Values 

K 2.9999 

Kp  -5.9994 

2Kp  11.9978 

3Kp  -23.9933 

4Kp  47.9915 

5p  -31.9945 

Table 3. Noisy case estimation for different orders. 

M  N  α /= M N V  K  −p

1 5 0.2 23.71 49.4 3.93 

2 5 0.4 16.79 -3.36 4.15 

3 5 0.6 13.17 -0.87 4.84 

4 5 0.8 34.45 0.11 -42.42 

5 5 1.0 9.87 0.78 -3.32 

6 5 1.2 20.06 2.17 0.92 

7 5 1.4 10.73 2.19 0.76 

8 5 1.6 8.49 2.98 1.99 

9 5 1.8 64.08 2.26 1.64 

10 5 2.0 172.5 1.73 1.50 

 

Fig. 2. The unit step response of the system (23) with the added 

Gaussian noise. 

In either case results presented in the eights row are 

corresponded to the minimum estimation error and the estimated 
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parameters are very close to the actual ones. 

In the following subsection, effect of integration order I  is 

investigated. 

4.3. Effect of the Integration Order I  

Since output of the system is measured in real applications, it 

contains measurement noise. On the other hand, since the 

measurement noise concentrates usually in high frequencies, 

integration of y , effectively attenuates the noise effect and so, 

whatever large I  is selected, the noise is more reduced in ( )Iy −  

and ( )I My − − . Of course, very large I M+  generates noticeable 

integration errors and therefore smaller integration steps will be 

necessary in such cases. 

Table 4 indicates the estimated parameters of the above system 

in the noisy case for different values of I . As expected, 

enlarging the integration order provides better estimation result. 

The order estimation was performed by the previously 

mentioned procedure. 

Table 4. Noisy case parameter estimation for different 

integration order I . 

I  V  K  p

0 8.49 2.9785 1.9938

1 0.017 2.9880 1.9969

2 0.004 2.9944 2.0002

4.4. Parameter Estimation for an unstable system 

The proposed method in this paper has capability of fitting a 

model structure to an unstable system in an open loop in a 

similar way discussed above. In this case one should apply the 

procedure only to the initial data before the output of the system 

grows too much. For instance, consider the following unstable 

fraction order system 

 
1.6

( ) 3
( )

( ) 2

Y s K
G s

U s s p sα
= = =

− −
 (24) 

Similar noise signal as discussed in subsection 4.2 with different 

variances was considered here. Fig. 3 shows the output for a 

specific noise level. The 1000 selected output samples were 

chosen from 0.1 to 1 seconds of the simulation time. 

 

Fig. 3. Simulated step response with added noise for the 

unstable system (24). 

Table 5 indicates the parameter estimation results in the noise 

free and noisy cases, after estimating the order by the previously 

mentioned procedure. The numerical problems due to the badly 

scaled matrix Φ  have direct relation to the time response 

values and can be resolved by the known existing improvement 

methods. The results shown in Table 5 have been obtained by 

pseudo inverse method. 

Table 5. Noise free and noisy case parameter estimation for the 

unstable system (24). 

Noise var. V  K  p

0 1.1e-13 3.00 2.00

0.01 0.85 2.98 2.08

0.02 0.34 2.96 2.15

5. Double Pseudo Poles Examples 

In this section the proposed method is examined in the 

identification of double pseudo poles model structures with real 

and complex poles values. 

5.1. Real Pseudo Poles 

The following stable fractional order system with two real 

pseudo poles is considered. 

 
1.5

3 1.5 1.5 1.5

( ) 4 3 2
( )

( ) 3 2 1 2

Y s s
G s

U s s s s s

+
= = = −

+ + + +
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The order accuracy is chosen as 0.5. Thus N  should be 2, and 

therefore, M  would belong to {1, 2, 3, 4} . The integration 

order I  was set to zero and a Gaussian noise was added to the 

output. Table 6 indicates the results for 3M =  in the noise free 

and noisy cases with different variances. 

Parameters 1p  and 2p  were determined from last two rows of 

Table 6. The other two unknown parameters 1K  and 2K  were 

calculated from two first rows of Table 6. It should be noted that 

one can obtain the four unknown parameters of the model using 

all rows of Table 6 and performing a nonlinear programming. In 

that case results would be slightly different from those 

calculated here. 

Table 6. Estimation results for a two real pseudo poles system 

(25). 

Noise var. 0 0.0049 0.01

1 2K K+  1.0000 0.9814 0.9737

1 1 2 2K p K p+  0.9998 1.0135 1.0184

2 2

1 2 2 1K p K p+  10.0002 9.9569 9.9336

2 2

1 2 1 2 1 2K p p K p p+  -8.0004 -7.9624 -7.9424

2 2

1 2p p+  5.0003 4.9842 4.9751

2 2

1 2p p  4.0002 3.9885 3.9816

Table 7. Parameter estimation results for a two real pseudo 

poles system (25). 

Noise var. 0 0.0049 0.01

1K  -1.9996 -2.0056 -2.0090

2K  2.9996 2.9870 2.9827

1p  -2.0001 -1.9957 -1.9932

2p  -1.0000 -1.0007 -1.0011
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There would be two solutions for either 1p  or 2p  if one uses 

the last two rows of Table 6. The negative values are selected 

here since they satisfy the two middle rows of Table 6. The final 

results for the unknown parameters 1K , 2K , 1p , and 2p  are 

seen in Table 7. As it is expected the estimation error increases 

by reducing the signal to noise ratio. However, the estimation 

results are good enough for the given simulation scenarios. 

5.2. Complex Pseudo Poles 

As the last simulation example a stable fractional order system 

with the following transfer function is considered. This system 

has two complex conjugate pseudo poles. 

 
3 1.5 1.5 1.5

3 3 3
( )

2 1.25 1 0.5 1 0.5

j j
G s

s s s j s j
= = −

+ + + + + −
 (26) 

We fit a double pseudo poles fraction model structure to the unit 

step response of the system. The order accuracy is selected as 

0.5. Thus N  has to be 2, and therefore M  would admit values 

between 1 and 4. Again we set the integration order I  to zero 

and added a Gaussian noise signal with different variances to 

the simulated unit step response of the system. Table 8 indicates 

the estimation results for 3M =  in the noise free and noisy 

cases. 

We have performed the same procedure as in the previous case 

to calculate the unknown parameters 1K , 2K , 1p , and 2p  

(Table 9). Similar to the obtained results in the previous 

subsections, the estimation error is not noticeable even in the 

noisy cases. Because of the noise and computational round off 

effect, the calculated values for parameters 1K  and 2K  have 

small real parts that are negligible. 

Table 8. Estimation results for a two complex pseudo poles 

system (26). 

Noise var. 0 0.0049 0.01 

1 2K K+  0.0000 -0.0173 -0.0247 

1 1 2 2K p K p+  3.0000 3.0339 3.0484 

2 2

1 2 2 1K p K p+  6.0001 6.0521 6.0741 

2 2

1 2 1 2 1 2K p p K p p+  -3.7501 -3.7763 -3.7873 

2 2

1 2p p+  1.5001 1.5199 1.5282 

2 2

1 2p p  1.5626 1.5750 1.5803 

Table 9. Parameter estimation results for a two complex pseudo 

poles system (26). 

Noise var. 0 0.0049 0.01 

1K  3.0j -0.0086+3.0729j -0.0123+3.0950j 

2K  -3.0j -0.0087-3.0729j -0.0124-3.0950j 

1p  -1.0-0.5j -1.0037-0.4975j -1.0053-0.4965j 

2p  -1.0+0.5i -1.0037+0.4975j -1.0053+0.4965j 

6. Conclusions 

In this paper, a new method has been proposed to estimate 

unknown parameters of one or two pseudo pole fractional order 

model structures. The proposed method is extendable with some 

complexity to the commensurate order transfer functions with 

any number of pseudo poles. 

The main shortcoming of the proposed method is probability of 

ill conditioning of matrix TΦ Φ  which becomes more serious 

when the order accuracy ( 1/ N ) is small. The problem is 

magnified when the measurement noise or round off error level 

is not negligible. Use of the conditioning methods would 

alleviate the setback in some extent, however, enlarging the 

order accuracy would be the more effective remedy in this 

regard. Of course this option would squeeze the model set and 

reduce its probability to include the true system. 
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