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ABSTRACT 

In this paper, the implementation of a current-mode 
universal filter by using DVCCs and all grounded 
passive elements is described. The circuit can 
simultaneously realize low-pass, high-pass, and band-
pass filter functions without changing the circuit 
topology and elements. It has the possibility of 
independent adjusment of ω0 without disturbing ω0/Q. 
PSPICE simulations are performed employing a 
standard CMOS technology (0.5µ Mietec) and the 
performance of the simulation results is tested by 
comparing with the results of the ideal filter’s 
simulation.  
 

I. INTRODUCTION 
Current-mode circuits have been receiving considerable 
attention owing to their potential advantages such as 
wider bandwidth, greater linearity, higher slew-rate, wider 
dynamic range, simple circuitry and low power 
consumption compared to voltage-mode circuits [1]. 
Current-mode filters have been found wide applications in 
instrumentation, analogue signal processing, automatic 
control and communication. The advantages in the 
realization of current-mode filters using current conveyors 
have received significant attention [2]. Thus, several 
multifunction or universal biquadratic filters using current 
conveyors have been reported in the literature. The first 
universal current conveyor active biquad was designed by 
Toumazou and Lidgey [3]. Since then a number of circuit 
realizations for universal current-mode current conveyor 
based filters were proposed [4-7]. Among the several 
variations of current conveyor, the most successful type is 
second-generation current conveyor (CCII) introduced by 
Sedra and Smith [8]. However, conventional CCII cannot 
be used in applications demanding differential or floating 
inputs like impedance converter circuits and current-mode 
instrumentation amplifiers, where as the design of 
amplifier requires two or more CCIIs. Considering 
drawbacks of CCIIs, a new building block called a 
differential difference current conveyor (DDCC) was 
presented in 1996 [9]. In 1997, a novel differential voltage 

current conveyor (DVCC) building block was introduced 
[10].  DVCC is a very versatile building block whose 
applications exist in the literature [11-15]. 
In this paper, by using two DVCCs and all-grounded five 
passive elements, a universal filter is implemented. 
PSPICE simulation of the CMOS DVCC universal filter is 
performed to demonstrate the results. The obtained 
simulation results for the implemented universal filter are 
compared with the ideal filter’s simulation results.  
 

II. DVCC 
The DVCC is a five-port building block which is defined 
by the following matrix equation [10]. 
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An ideal DVCC building block is shown by the use of 
symbol in Figure 1.  
 

 
 

Figure 1. Symbol of the DVCC 
 
The CMOS realization [10] of the DVCC used in this 
paper for the universal filter implementation is shown in 
Figure 2. 



     

 
Figure 2. CMOS realization of the DVCC 

 
 

III. CMOS DVCC FILTER IMPLEMENTATION 
The implemented current-mode universal filter is 
illustrated in Figure 3. Using the standard notation, the 
DVCC characteristics can be described by Iy+=IY-=0, 
Vx=VY+ - VY-, Iz+=Ix, Iz-=-Ix. Routine analysis of the 
circuit yields the following current transfer functions: 
 

312122

2

3121

1
/1

RRCCRC
ss

RRCC
I
I

in

LP

++
=                   (2) 

312122

2

2

1
RRCCRC

ss

s
I
I

in

HP

++
=                              (3)  

312122

2

32

1
/

RRCCRC
ss

RCs
I
I

in

BP

++
=                              (4) 

 
where the pole natural frequency and pole quality factor 
of the implemented filter are expressed as 
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Thus, second order current-mode low-pass, high-pass, and 
band-pass filter characteristics given respectively by Eqs. 
(3), (4) and (5) can be simultaneously realized without 
changing the circuit configuration. By adding ILP and IHP 
outputs, the transfer function can be organized giving a 
notch filter transfer function as follows: 
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From Eqs. (5), (6), and (7), it can be seen that ω0 can be 
adjusted independently from ω0/Q by changing the value 
of R3. Also, the quality factor Q can be adjusted by 
changing the grounded resistance R2 without affecting the 
pole natural frequency ω0. 
 
 

 
Figure 3. Universal filter 



IV. SIMULATION RESULTS 
To verify theoretical analysis the implemented circuit has 
been simulated using PSPICE program by using 0.5µ 
Mietec technology process parameters. The circuit in 
Figure 3 was used to realize low-pass, high-pass, band-
pass, and notch filters exhibiting a Butterworth 
characteristic with a cutoff frequency of 255kHz. The all-
grounded passive elements of the filter were chosen as 
C1=C2=1nF, R1=1k, and R2=R3=0.5k. The supply voltages 
were taken as VDD=2.5V and VSS=-2.5V. The biasing 
voltage VBB was taken as -1.7V. The PSPICE simulation 
results given in Figure 4 for the low-pass, high-pass, and 
band-pass filter characteristics and in Figure 5 for the 
notch filter characteristic verify the theoretical analysis.  
As it can be seen from Figure 4 and Figure 5, the pole 
natural frequency is in a good agreement with the 

frequency calculated using the derived analytical formula 
given by Eq. (5).  
 

V. CONCLUSION 
In this paper, a current-mode universal filter implemented 
with two DVCCs and five all-grounded passive elements 
is introduced. The filter can simultaneously realize low-
pass, high-pass, and band-pass filter functions without 
changing the topology and elements. A notch filter 
characteristic can also be obtained by getting a suitable 
output. Also, the adjustment of bandwidth and quality 
factor without affecting each other is possible. The 
workability of the filter is confirmed by the PSPICE 
simulation results.   
 

 
 

 
Figure 4. Gain-frequency characteristic of the low-pass, high-pass, and band-pass outputs 

 
 

 
Figure 5. Gain-frequency characteristic of the notch output 
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