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ABSTRACT 
 
Several voltage collapses have had a period of slowly 
decreasing voltage followed by an accelerating collapse in 
voltage. In this paper we analyze this type of Voltage Collapse 
based on a Voltage Collapse Model. The essence of this model 
is that the system dynamics after bifurcation are captured by the 
center manifold trajectory and it is computable model that 
allows prediction of voltage collapse. .Both physical 
explanations and computational considerations of this model are 
presented. Voltage collapse dynamics are demonstrated on a 
simple power system model . 
 

I. INTRODUCTİON 

 
Voltage stability problems in power systems may occur 
for a variety of reasons, from voltage control problems 
with automatic voltage regulators (AVR) and under-load 
tap-changer (ULTC) transformers, to instabilities created 
by different types of bifurcations.  
 
Several conference proceedings /1,2/ summarize most of 
the voltage stability problems, and discuss techniques and 
models proposed by several researchers relating to the 
area of bifurcation theory. These bifurcations are 
characterized by changes in the eigenvalues of the system 
equilibria as certain parameters change in the system.  
 
Typically, the generation or system loading levels are 
used as bifurcation parameters, which are varied slowly, 
moving the system from one equilibrium point to another. 
However, for certain values of the bifurcation parameters, 
more complicated behavior may result, leading to 
instability. Under these conditions it is possible for the 
system to exhibit oscillatory behavior /3/ or even voltage 
collapse /4, 5/.  
 
These conditions are mathematically characterized by one 
of the system's eigenvalues becoming zero (Saddle-Node, 
Transcritical, and Pitchfork Bifurcation), or by a pair of 
complex conjugate eigenvalues crossing the imaginary 
axis (Hopf Bifurcation). The importance of system 

modeling in voltage stability studies, especially regarding 
the location of the bifurcation points and the 
corresponding system dynamic response, has been 
addressed in several studies /4, 7,8/ . However, there has 
been little agreement in the power system community as 
to which particular models are adequate for these types of 
studies.  
 
Various models have been proposed /9,10/ to capture the 
basic dynamic voltage response of the system. In 
reference /11/, the authors examine the characteristics of 
power systems where induction motors constitute a main 
portion of the load. In their study, three different 
induction motor load models are considered/6/.  
 
The loads were modeled as constant, linear and quadratic 
functions of the induction motor rotor speed. Static loads 
were also included in the system model, allowing for the 
examination of the effect of changing the proportion of 
the total load. The study found that for constant load 
models, saddle-node bifurcations occurred at higher 
voltage levels and at higher speeds as compared to the 
speed dependent mechanical load models.  
 
The loads in the system were modeled using a third order 
induction motor model and lumped impedance elements. 
The system generator was modeled using a dynamic two-
axis model with an IEEE type 1 exciter.  
 
Dynamic transmission line models were not incorporated 
into the studies. The use of dynamic transmission system 
models are presented in reference 7, with a simple single 
generator example. In the current literature, individual 
components of power systems have been examined in 
bifurcation studies.  
 
This paper examines the effect of using different levels of 
model detail on system bifurcations and their 
corresponding effect on voltage collapse phenomena. 
Different models of induction motors, ULTC 
transformers, dynamic transmission line models, and 
dynamic lumped load impedances are considered.  



II. SYSTEM MODELS 
 
The aggregated load is composed of a single induction 
motor and a static impedance load. The various steady 
state and dynamic models used to represent the different 
elements of this reduced system are described below.  
 

GENERATOR 
 
The generator was modeled using both a simple Thevenin 
equivalent and a detailed dynamic model. For each of the 
models considered, the generator is used as the system 
reference. The detailed model of .the synchronous 
generator uses the standard set of  p.u. dq0 equations for a 
rotor based reference frame connected to a balanced 
three-phase system.  
 
Generally referred to as the flux model. The AVR is set 
to maintain a constant terminal voltage using a simple 
integrator control, i.e.,  
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Where Ta is the time constant of the AVR, refV is a 
reference signal, and tV is the magnitude of the generator 
terminal voltage. No droop was introduced into the 
governor model to better match the steady state model of 
the generator, allowing for a better comparison of the 
different models of the system. Hence, the governor is 
simply modeled by  
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where wref is a reference speed, set to the desired output 
angular velocity, wr is the rotor speed, and Tg is the time 
constant of the governor. The mechanical power Pm and 
the mechanical torque Tm are related by: 
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ULTC 
 
The ULTC is assumed to be an ideal device, i.e., 
saturation and losses are neglected and any internal 
reactances is lumped into Xth. To simplify the analysis of 
the aggregated load while retaining some of the important 
voltage control features of the ULTC, this paper assumes 
a continuous control of V2 with no limits. However, in 
practice, V2 would typically be controlled discretely by 
the transformer taps within certain limits. The following 
equations were used to model the behavior of the ideal 
ULTC: 

V2=aV1  
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Where a stands for the tap shift on the secondary side 
with respect to a nominal 1 p.u. value, V20 is the control 
set point, and Tt represents the ULTC time constant.  
 

TRANSMISSION  SYSTEM 
 
The transmission system of the supply network is 
modeled using an equivalent Thevenin impedance Xth in 
steady state. On the other hand, the dynamics of this 
transmission system could be described in a generalized 
dq reference frame as follows:. 
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Where w is the dq transformation reference frame speed, 
and Lln = Ls +Lm. The zero-axis is not considered, as the 
system is assumed to be balanced.  
 

IMPEDANCE LOADS 
 
The model used to describe the static system loads 
corresponds to the standard RL impedance model. When 
phasor models are used, the impedance load is modeled 
using the real and reactive demand of the load. Dynamics 
of the impedance load can be introduced by considering 
the differential equations used to describe the current 
through an inductor using a generalized dq reference 
frame as follows:  
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Where the d-axis and q-axis variables, d and q 
respectively, include the inductor current iIL and the 
voltage at the load bus v. The resistive component of the 
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impedance load is used to define the voltage v using the 
following linear algebraic equations: 
 
vq=RIL(iq - iILq) 
 
vd = RIL(id – iILd ) 
 

INDUCTİON MOTOR LOADS 
 
The induction motor is modeled using the standard set of 
p.u. dq0 equations for a synchronously rotating reference 
frame connected to a balanced three-phase sinusoidal 
supply  
 
Reduced order models can be easily obtained from the 
standard model by eliminating certain derivative terms. 
For example, if the stator flux linkage transients are 

ignored, i.e., 0ds
.

qs
.

=ψ=ψ , the standard model is reduced 
to a third order model..  
 
The mechanical load torque Tl is simulated as a linear 
function of the rotor speed as follows: 
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Where λ  is used as a slow varying parameter to simulate 
changes in the mechanical load, we is the synchronous 
reference frame speed, and wr is the rotor speed.. 
 
A requirement is that at equilibrium points the electro-
magnetic torque Te and the mechanical load Tl are of 
equal magnitude.  
 
Therefore, system equilibrium points occur at the 
intersection points of the torque- speed curves of both the 
induction motor and the mechanical load. The number of 
intersections between the two curves represents the 
number of equilibrium points for a given value of λ ; as 
λ  varies the number of intersections between the curves 
changes.  
 
The value of λ  for which the mechanical load intersects 
the maximum of the electro-magnetic torque curve 
represents the maximum loading of the system; this point 
is typically corresponds to the “knee” of the system 
power-voltage curve (PV curve).  
 
For loading values greater than the maximum loading, 
there will be little change in the speed and terminal 
voltage characteristics of the machine, since the 
intersection point of the two curves does not change 
significantly, yielding similar torque and speed 
(mechanical power)values for relatively large values of 
λ . 

III. CHANGES IN POWER SYSTEM 
CONTRIBUTING TO VOLTAGE COLLAPSE 

 
There are several power system changes known to 
contribute to voltage collapse. 
 
• Increase in loading 
• Generators or SVC reaching reactive power limits 
• Action of tap changing transformers 
• Load recovery dynamics 
• Line tripping or generator outages 
 
Most of these changes have a large effect on reactive 
power production or transmission. Control actions such 
as switching in shunt capacitors, blocking tap changing 
transformers, redispatch of generation, rescheduling of  
generator and pilot bus voltages, secondary volt-age 
regulation, load shedding and temporary reactive power  
overload of generators are countermeasures against 
voltage collapse.  
 
 

STABILITY AND VOLTAGE COLLAPSE 
 
To discuss voltage collapse some notion of stability is 
needed. There are dozens of different definitions of 
stability. One of the useful definitions is small 
disturbance stability of an operating point: An operating 
point of a power system is small disturbance stable if, 
following any small disturbance, the power system state 
returns to be identical or close to the pre-disturbance 
operating point. This definition describes the dynamic 
behavior of the power system when a small disturbance 
occurs. 
 
A power system operating point must be stable in this 
sense to be sustainable in practice. Suppose a power 
system is at a stable operating point. It is routine for one 
of the changes discussed above to occur and the power 
system to undergo a transient and destabilize at a new 
operating point. If the change is gradual, such as in the 
case of a slow load increase, the destabilization causes 
the power system to track the operating point as the 
operating point gradually changes.  
 
This is the usual and desired power system operation. 
Exceptionally, the power system can lose stability when a 
change occurs. One common way in which stability is 
lost in voltage collapse is that the change causes the 
operating point to disappear. No operating point implies 
that the power system undergoes a transient. The dynamic 
fall of voltages in this transient can be identified as a 
voltage collapse.  
 
The transient collapse can be complex, with an initially 
slow decline in voltages, punctuated by further changes in 
the system followed by a faster decline in voltages. Thus 
the transient collapse can include dynamics at either or 
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both of the transient and long-term time scales defined 
above. Corrective control actions to restore the operating 
equilibrium are feasible in some cases. Mechanisms of 
voltage collapse are explained in much more detail in the 
following sections.  
 
 

IV. POWER SYSTEM MODEL 
 
Consider the power system model shown in  figure 1. one 
generator is a slack bus and the other generator has 
constant voltage magnitude Em and angle dynamics given 
by the swing equation 
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Where M, dm and Pm are the generator inertia, damping 
and mechanical power respectively. Q1 is chosen as the 
system parameter so that increasing Q1 corresponds to 
increasing the load reactive power demand.  
 
The load also includes a fixed capacitor C to raise the 
voltage up to near 1.0  per unit. Instead of  including the 
capacitor in the circuit, it is convenient to account for the 
capacitor by adjusting E0 and Y0 to give the Thevenin 
equivalent of the circuit with the capacitor. The adjusted 
values are 
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Thus increasing C has the effect of increasing E’

0 and 
decreasing Y’

0 ; their product E’
0Y’

0 = E0Y0 remain 
constant.  
 
The real and reactive powers supplied to the load by the 
network are  
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Figure 1. Power System Model 
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Figure 2. Random waveform of generator angle. 
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Figure 3. Random waveform of load bus frequency. 
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Figure 4. Random waveform of slack generator angle. 
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Figure 5. Random waveform of load bus. 
 
 

V. CONCLUSİON 
 
The objectives of the analysis are focused on modeling 
issues in bifurcation analysis. This is especially useful for 
voltage collapse studies. Because of the nature of a power 
system, different components and parts of individual 
components have different dynamical responses.  
 
The time constant associated with the components and 
their interactions influence the formation of bifurcations. 
By comparing different models of the induction motor 
load and the system, one may determine the levels of 
modeling required for these types of studies. 
 
Voltage collapse is often attributed to load reactive power 
supply problems. However the voltage collapse model 
applies to any system of differential equations with a 
single, slowly varying parameter.  
 
A simple power system has been observed in computer 
simulations to become a chaotic system over a range of 
loading condition. 
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