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Abstrart- We present in this paper certain
fundamental aspects of decoupling in the
generalised predictive control of multidimensional
systems with constraints. The presentation is
performed around a control schema by minimising
a finite horizon quadrature criterion. This
predictive control stategy has already been
successfully used in different industrial and semi-
industrial applications by treating complex
processes such as instable systems with npon
minimum phase having unknown or variable
delays with time. The simulation results obtained
show clearly the importance of the predictive
control with constraints.

L INTRODUCTION

The constant confrontation with the industrial
reality compelled us to adapt, modify and develop
flexible and universal methods in order to have
better performances. The regulation aspect has
always been taken into account in the industry.
However, with the introduction of the optimisation
criteria and the necessity to have better quality in
the manufactured products, in an overproduction
economy and energy and crude matter saving,
compelied us to take into account the multivariable
aspect of the regulation. The first approach was to
study the multivariable control using a multiloop
systems, characterised by the absence of interaction
between loops. In several cases the interaction
within a process are too strong, thus requiring the
resolution of the control problem using a
multiloops system.
This is why it is important, in most industrial
processes, to perform a decoupling beforchand. In
practice, the real processes, are often subject to
physical constraints of the inequality and /or
equality type through the input control, the output
to control and the system states. Considering these
operating constraints in a process, would be very
interesting in the synthesis of the control laws.

In this paper, we present a new control scheme,
based on the computation of 2 new causal
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precompensator, explicitly taking into account
inequality type constraints on the system inputs
and outputs. It is the generalised predictive control
with constraints. An example of such approach
and its application in a real process is also
presented.

IL PROBLEM FORMULATION
The generalised predictive control algorithm
(GPC), will be deduced by considering a discreet
multivariable linear system operating in a
stochastic environment which could be represented
by the following CARIMA type model :

Ag )y = Bghut-v + agh sy ()
avec AQ) =L+aq’ +... ta g

-1y . -1 -1b
B )—b0+b1q A A +b‘bq

S N -1 (4
aq™) =1+eq” +...+¢c g

q"lz is the backward shift operstor, q'l)(t) = t-1)

AGH=Tp(1-qT)

where y(t) € R? , u(t) e R? , e(t) e R°
represent the output vector, the input vector and a
noise sequence with a zero average and a finite
variance, respectively. The considered model leads
to two very important features. It enables to easily
introduce an integrator in the regulation system to
eliminate the influence of the steady state
perturbation and improve the quality of the
estimation of model parameters of the process.
There is no special hypothesis on the matrix
polynomials , the procedure may be instable on
an open and/or a with a non minimum out of
phase. If the A(q™") matrix is not diagonal, we
can always do a transformation so as to make it
diagonal.

The generalised predictive control GPC is based
on the minimisation with respect to the control
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increments u(t), the performance quadrature
criterion given by the expression (2):

e 2 e+ +k)—y(t+j+k))2

Nu 2 .
+2 ]Z'.IM t+j-H @

where w(j+j+k) is a sequence of consign or desired
values supposed to be known ; Np is the horizon
prediction , Nu the horizon control, Ni the initial
horizon , is the control signal weight factor. The
control could be formulated as follows : At any
instant, we wish to compute, for procedure (1) a
sequence of control :

T = [Au0), Aut+1) . Aue+Ny D] )

that minimises the performance criterion (2) and
satisfying in the same time the constraints on the
control inputs and their derivatives over all the
horizon prediction Np. The constraints could
readily be put in the form :

Umin < u(t) € Umax ;

-Sdu < Au(t)< Sdu @
where Umin, Umax and Sdu are the u(t) low and
high thresholds and the increment control
threshold, respectively.

1. NON-DECOUPLED PREDICTIVE
CONTROL SYSTEMS
There exists two approaches concerning the
decoupling systems of the multivariable control.
The first one, by adding a precompensator and the
second one, by weighting point by point the eror
tracking during the consign change. The
multivariable system will then be decoupled into a
set of monovariable systems each of then controlled
by a unique input, when introducing the following
precompensator :

u(t) = Cp@™")u,@@™) &)
where Cp is a causal and stable transfer matrix;
and up(t) is the auxiliary control vector. The initial
vector, now in diagonal form could be written as :

A@@")y® = B(@")Cp(@™) u, (t-1)
+eft) (6)

this process diagonalization should be performed
without pole and instable zero compensation. The
main idea to compute the precompensator Cp
consists to component factorize the control
polynomial matrix, as follows :
B(g") = B,@")B,(q") Y
where B,(q"') matrix polynomial formed of
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instable zeros and common delays of each line of
matrix B, (q"') defined as :

B,(q") = diag[B, q*, ..., B, a*] ®
whre B ,. q "*' (i=1,...,p) rcpresent
the largest common factors of line i of matrix
B (q™), that could not be compensated. To find a
causal and stable compensator, it is necessary to
extract the instable parts and the pure delays from
each column of the polynomial matrix B,(q™).
We, then define the following matrix

B,(q") = diag[D;(q™)] ©)
where the potynoms D,(q” ) (i=1,...,p)
represent the instable zeros and the pure delays of
each column of the polynomial matrix B2(.
However, we could also build an appropriate
pr%oompensatorbychoosing:

de(B,t)Aup -] ‘P;i(e,¢,slm,stu,t), 1el

c;j(e,t)mp,, = ¥, @, pdvsbyt); icE

where CTpi (6, 1) , W,;(t) arc the matrix
and the vector to define in terms of the considered
constraints.
Cp(@") = B,(q")B,(q") (10)
By replacing the equations (7) and (10) in (6), we
obtain:

A@)y®) =B(@"B.@") Cpla") u, (t-1)

+ e (1
where A(q") , B, (@) et B,(@")
are diagonal polynomial matrices. The built
precompensator enables then to decouple the
system to control in p into monovariable systems.
The new parametrization procedure leads us to
write the quadratic criterion as :

J:ji(w(t +j+k) -t +j+i)?

Ne 5
+1 j);“lAup t+j-) (12)

The constraints on ut) and y(t) should be
transferred on up(t) and their increments

3.1 GPC control predictive constraints
To synthesise the predictive control law of the
decoupled multivariable system into a set of
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monovariable sub-systems, we start by establishing
a sequence of predictions with step j for each
output yi(t+j). Let us consider the following Bezout
identity :

R = 5 e i
1 =E (g Jadlar) + 4 E5E07) | (W)

where  E;(q7) and F;;(@") are two
polynomial matrices of unique solutions of
minimal respective degree (j-1) and (na) of the
polynomial identity (14). We define:

-1 - -1
Bo@™) = B @HCp@™h) (15)
by multiplying both members of identity (14) by
y(t+j) and using model equation (11), we deduce
the optimal predicator y*(t+jt) at time t of the
predicted output y(t+j)

y e+ 19 = B BE@T) Augj -1)

+E@DHy) 16

The index i was omitted to make the expression
more easy. The termEj(q'l)B(q-l) Au(t+j -1)

could be decomposed into two parts. One of then
depends on the future control, the other on the past
when using the following identity :

Ej(q.l) B@") = Gj(q-l) +q? K| @) amn

Gj(q"); Kj(q") represent the minimum
order solution (j-1) and (nb-1), respectively. The
optimal prediction equation could be written as :

y @+ /9 = Gy@™ Au+j -1)

+ K@) Aut-1) + Fa™)y®) 08)

We put:
Yo+ =K @) dut-1+Fia™) v

Y+ 19 = G@ ) Akt + -1) +yft+i) (19

thus, the j step predictor depends on two terms :
the first one is function of the futures controls, the
second depends only on the information available
at time t, and corresponds to the j step predictor
when all the future inputs are null. Over all the
horizon predictor, the predictor is given by :
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Yer 9 =GahHan  +  ye+D

@0

Y e /) = G@HAep-D+ v e+Np)

This expression can be written in the following
vector form (21) :

Y (21)
With the optimal predictor and without constraints
the control law is obtained in an explicit manner by
minimizing the criterion (12) , with respect to
control’s increments vector Au(t),;. The

solution can be expressed as follows (22) :

GAU,; +Y,

AU,; =(G'G+1)' GT(W-Y,) @)

3.2. Constrained predictive control
When dealing with constraints ( 13) , it is not
possible to express the solution in an explicit form
(22). Therefore , the control law computation by
process (11) , which minimize the performances
criterion (12) , with respect to A u(t),,; , subject to
constraints (13) , becomes a matter of 3 constrained
quadratic minimization with respect to auxitlary
control increments vector. This problem is solved
by building predictions sequence that have j as a
step for u(t+j) control’s vector , using the
following Bezout identities (23):

1=F@ha e +dFelg™ @9

E'@)CE") =G@) + K/ @) (3b)
After some algébraics suitable transformation , a

predictor sequence is obtained and defined by the
expression below (24).

wt+)=EJ @) CaN G @)+ -1

+Eighuwy @

The j step prediction vector for the inputs , is
written as (25):

Ut =Gc A Upt+ Uo 25)




Each term of uo(t) is computed by (26) :
“K (! ]
uo(t) KcJ {q )Aup(t 1)
+ ch(q'l)u(t-l) (26)
The constraints upon the control amplitude u(t)

are expressed on the prediction horizon Np under
the following condensed form :

Sbu < u(t) < Shu QD
Shu® = [ShuT,. s .,ShuT]
with : - - e
Sbu' = [Sbu,...,Sbu"]
where Sbu < GeAUp,t < Shu- Uo (28)
and with :

Cel | 1
[ °c |avpt = [‘Pz ] (29.9)

where Ccl =Gc ; ypl=Sbu-Uo ;

y p2 = Shu - Uo

The control’s input derivative constraints can be
readily put in the form below :

[Ce2 ] i [‘I’pB} sob
!_-CcZ Pt 2 | wpq (29.b)

avec Cc2=Gce -G’

The considered constraints are condensed as:
Cpt AUptz ypt (30)

The GPC control scheme with a precompensator
and the introducing of the constraints are shown
in fig..1.

-

I ™ R .
Gt oy Ly

Fig.1. Scheme of GPC control with constraints
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v, PRESENTATION AND
MODELLING THE PILOT
DISTILLATION COLUMN

4.1. Description of process

A binary distillation column , has been choosen to
test the developped algorithms. In fig.2. shows a
schematic diagramm of the pilot plant distillation
column. Distillation columns , the most common
scparation unit are used in chemical and refining
industry to achieve product purification. The
column used for all our ftest is equiped with
vertical cylinder which contains eight trays and an
electrical heater located at the bottom of the
column. At its top we find a condenser. A binary
methanol-water feed stream containing 50 mass %
Methanol is introduced at 18 g/s to the fourth tray
from the bottom. Then the stream is condensed
inside the condenser. the final product is driven out
as a distillat. If we wish to improve the product
concentration , a reflux is used . The latter is more
important for the process. A pure product is the
result of a reflux excess. Therefore , the aim of any
control is to obtain a given pure quality with a
minimal production cost.

Couling wiles

Top pmdnet
* 7

Fig..2. Scheme diagramm of pilot-plant
distillation column

4.2. Process modelling

Using a complex dynamic for the process means
that it is non linear and contains a high mumber of
state variables. Therefore , finding an optimal
control law becomes very difficult. The dynamic
behaviour is represented by multi-input multi-
output type. We will find in this model , the reflux
flow Lr and heating power , which are primary
input. The product concentrations at the top Xd
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and the bottom Xb , are the main outputs. An the steady state , the outputs Xd and Xb remain
identification for the linearized process , from the constant. The disturbances acting on the outputs
normal set point value, leads to the following pilot plant well correctly compensed. This clearly
matriciel representation (31): Justifies that the considered GPC predictive control

g precisely discard the non measurable disturbances.
K]e-@ns Kze-@zﬂ

xd g o mg 5 VL CONCLUSION
1+T15 “'BS

The stability of all the obtained results , gave
evidence for GPC control strategy and its success
) @1) in the constrained multivariable decoupled

systems. The proposed technic in this paper gives
the possibility to take into account in an explicit

Xb K3e'azs 1(413'94s Q’J manner the constraints over all the control horizon
ol a Nu, which give higher performance in comparison
[ 1+HS  1+TS | to other control scheme. We also , nofe that the
multivariable decoupling systems is efficient and

where Xd and Xb , are the top and bottom petm:ts@redwedwdimenslonp_roblem,thanks
concentration (mass % methanol) repectively : toacenamnm_lberofchoos.en apﬁbleparamcters
Lr : represents the reflux flow (rate Vh ) ; and thus reducing computing time and memory
Qb: the heating power (kW) ; volumechmng.thesemp.Thepmpgsedmethodls
Ti : Time constant and ©; : the time delay. noccaary; fosistable procesacss with dpen ooy |

non minimum phase and unknown time delays or
variables with respect to time. This is because the
conventional controllers , are not taking into
account of the process characteristics particularly
- e actuators physical constraints

A discrete time representation for this system , is
given by matrix (32).
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the reflux flow and the heating power. These
shapes depict the behaviour of decoupled GPC
control with the introduction of the constraints
upon the signal amplitudes Lr and Qb and upon
their increments. Fig.3b. show that the
precompensator Cp introduction enabled to
perfectly eliminate the interactions between the two
control loops. The control signal variations remain
within the imposed limits of the constraints and in
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