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ABSTRACT 
Modelling of ground wave propagation over realistic 
earth’s surface has gained more importance due to the 
development of complex communication systems as 
well as radars.  In this study, parabolic equation 
technique, which is common and popular for the 
modelling of electromagnetic wave propagation in the 
troposphere, is explained. The necessary modifications 
required for modelling propagation over irregular 
terrain is also described in detail and the method is 
applied to typical as well as complex propagation 
scenarios.  
 

I. INTRODUCTION  
The development of today’s communication systems as 
well as radars, which are mostly used within multi-area, 
multi-sensor, land-based, maritime and/or air-based 
integrated complex systems (such as an integrated 
maritime surveillance system or integrated early warning 
system against tactical ballistic missiles, etc.) requires the 
modelling of electromagnetic wave propagation over 
realistic earth’s surface through a radially inhomogeneous 
atmosphere. Electromagnetic waves propagate to longer 
ranges with two typical wave types: ground and sky 
waves. Sky waves are mostly affected by the upper 
atmosphere (ionosphere), while ground wave propagation 
changes due to the lower and middle atmosphere 
(troposphere) characteristics as well as ground effects. In 
this study, ground wave propagation, which is a reliable 
option for long-range communication, is taken into 
consideration.  
 
Propagation of radio waves over long distances near the 
earth’s surface shows quite different characteristics 
depending on the nature of the communication path and is 
among the challenging modelling and simulation 
problems. The variability of the ground characteristics 

and terrain profiles as well as those of the overlying 
atmospheric layers render the problem non-tractable via 
exact analytical methods. Therefore, only analytical 
approximate solutions, such as ray and mode theories (see 
[1] for a brief overview) exist and a full-wave, observable 
based and numerically computable solution has not 
appeared yet. Two-dimensional, Parabolic Equation (PE) 
technique, which is called Split Step Parabolic Equation 
(SSPE) if it is based on FFT (Fast Fourier 
Transformation), has been introduced as an alternative to 
ray-mode methods and is in use for more than a decade 
(see [2] for details and chronological reference list). Here, 
SSPE method is explained with the necessary 
modifications required for modelling propagation over 
irregular terrain and applied for typical as well as 
complex propagation scenarios. 
 

II. PARABOLIC EQUATION 
Fourier Split Step algorithm, which is used to solve 
parabolic type equations, is common and popular for the 
modelling of electromagnetic wave propagation in the 
troposphere [2]. Although there exist other propagation 
models capable of accounting for horizontal refractive 
gradients, they are restricted to simplistic refractive 
conditions, lower frequencies and/or certain regions of 
space. Leontovich and Fock [3] described the use of 
parabolic equation (PE) for electromagnetic wave 
propagation in a vertically inhomogeneous medium. 
However, this approach has become famous after the 
introduction of the Fourier Spit Step algorithm by Tappert 
[4,5], who solved the acoustic parabolic wave equation 
with this method numerically, because the scalar 
parabolic equation associated with electromagnetic 
propagation in troposphere is, within a good 
approximation, the same as the one used to describe 
acoustic wave propagation in the ocean.  
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2.1 The SSPE Solution 
In two-dimensional (2D) Cartesian space, where, x-axis 
and z-axis are height and range coordinates, respectively, 
the standard parabolic equation is given as 
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Here, k0 and n denote the free space wavenumber and 
refractive index, respectively. This function can be solved 
with the help of Fourier transform resulting in SSPE 
algorithm defined as 
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where ∆z=z-z0, kx, and FFT-1 correspond to range step 
size, transverse wavenumber, inverse fast (discrete) 
Fourier transforms, respectively. Since PE is an initial 
value problem, an initial transverse field distribution, 
u(z0,x) is injected then it is longitudinally propagated 
through a medium defined by its refractive index profile, 
n(z,x) and the transverse field profile u(z0+∆z,x), at the 
next range step, is obtained. By sequential operations 
accessing the x and kx domains via FFT and inverse FFT, 
respectively, one may obtain the transverse field profile at 
any range. Because SSPE cannot handle the boundary 
conditions (BC) at the surface, one usually resorts to 
Dirichlet or Neumann type BCs when perfect electrically 
conducting (PEC) boundaries are of interest; these BCs 
can be satisfied either by extending the initial vertical 
profile from [0-Xmax] to [-Xmax, Xmax] (odd or even 
symmetric), or by applying a SINE or COSINE FFT, 
respectively.  
 
2.2 Earth’s Curvature Effect  
In reality, the atmospheric refractive index on the ground 
changes with height and range. However, the vertical 
variation is more dominant and the horizontal variation 
can be neglected, therefore the vertical profile of 
refractive index is usually taken into consideration.  For 
standard atmosphere, the gradient of refractive index is 
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referring to a linear decrease with height and is known as 
standard atmosphere condition [6]. Here, n0(x) is the 
height profile of refractive index for flat earth. Since 
refractive index decreases with height, radio waves are 
bent downward towards earth. In Fig.1,  |u(z,x)|  values vs. 
range-height obtained using (2) is plotted for standard 
atmosphere. The source, located at 25m above the ground 
has a Gaussian vertical distribution with 18m extend. The 

grey scale from white to black corresponds to signal 
strength values from maximum to minimum. 
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ure 1.  Signal strength values versus range-height, 
ere dn/dx = -40x10-6 km-1 
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ure 2.  Signal strength values versus range-height, 
ere dn/dx = 117x10-6 km-1  

order to model propagation over realistic earth’s 
face, it is required to include earth’s curvature effect. 
2D rectangular coordinates, both the earth’s curvature 

d the standard atmosphere condition can be included by 
ng n=n0+x/ae, where n0 is the refractivity value at the 
face and ae=4a/3=8504km is the effective earth’s 
ius. This is known as the flat earth approximation. 
en the gradient of modified refractive index becomes       
7×10-6km-1, which shows that the modified refractive 
ex increases with height, so that the radio waves are 

nt upward as shown in Fig.2, for the same source 
plied in Fig.1. The atmospheric conditions change due 
the climatic as well as local variations, resulting in 
mation of sub or super-refracting regions and ducting 
ects. Therefore, the vertical refractive index profile has 
be calculated using the atmospheric pressure, water 
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vapour pressure and temperature data obtained by 
meteorological measurements [7].  Since the atmosphere 
is not always standard, the refractive index including the 
earth’s curvature is defined as n(x)=n0(x)+x/a, where 
n0(x) is the refractive index height profile for flat earth. 
 

III. TERRAIN IMPLEMENTATION IN SSPE 
Terrain implementation, which is important for 
propagation prediction, is not very difficult in the SSPE 
algorithm. Propagation modelling over terrain in SSPE 
can be included via different kinds of mathematical 
approaches and it is possible to choose the appropriate 
one for the problem. Here, two different types of terrain 
implementation techniques in SSPE algorithm are taken 
into consideration. 
 
3.1 Piecewise Linear Terrain Modelling 
Piecewise linear terrain algorithm depends on the change 
of variables due to the terrain height. New variables are 
defined as [2,8] 
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where h(z) is the range dependent terrain function. It is 
required to introduce a new function in terms of the new 
coordinate system 
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Then the modified PE equation [8,33] is reduced to 
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with the term in brackets representing the final form of 
the phase function ϑ . Here, )(h ζ′ and )(h ζ′′ denote 
the first and second order derivatives of the height 
function with respect to ζ, respectively.  

If the terrain function is known, it is easy to apply this 
conformal mapping to the SSPE algorithm since only the 
second derivative of the function is needed. But it is 
usually impossible to know the terrain function, instead, 
the ground height difference with the range can be 
measured, therefore there exist only the terrain height for 
each range step. With the help of this information, terrain 

can be represented as a sequence of linear segments. 
Assuming the terrain has slope α on segment, z1≤ z≤ z2 
[8] the corresponding vertical slice is 
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The second derivative can be determined using the 
second-order central difference formula with the range 
interval corresponding to the PE range step for the SSPE 
algorithm. While applying the piecewise linear terrain 
modelling, one should be aware of that new scalar field 
function, v, must represent propagation angles up to 
θmax+α max , where α max  is the maximum terrain slope 
modulus, if the solution u is required to represent 
propagation angles up to θmax  [2]. 

3.2 Staircase Terrain Modelling 
This is a simpler way of terrain modelling, in which slope 
values are not required, only the terrain height for each 
range is needed. 

For staircase terrain, on each segment of constant height, 
the function is propagated in the usual way, applying the 
boundary condition at the ground. When the terrain height 
changes, corner diffraction is ignored and the field is 
simply set to zero on vertical terrain facets. Since the 
computation height is not changed due to the terrain, there 
is no need for the modification of refractive index 
therefore it is also easy to implement the staircase terrain 
modelling into the SSPE algorithm. Only it should be 
taken into account that ground does not support 
propagation under the constant height for each segment 
[2]. Although staircase approach cannot model the terrain 
as smooth as it must be (see Fig. 3), comparisons show 
that the results are quite satisfactory (see Fig. 4).  

In Fig. 4, two different terrain implementation techniques 
for parabolic equation are compared for a concave-convex 
type terrain. Staircase and piecewise linear terrain 
implementations, each calculating the terrain effects to the 
EM propagation in a different manner, give similar results 
for path loss at 15m height. Here, the 3GHz transmitter is 
15m above the ground and path loss (Lp[dB]) is computed 
using [1] 
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Since SSPE solution cannot model cylindrical spreading 
of the wave, for realistic calculations u(z,x) has to be  also 
multiplied by 1/ d (i.e., 10logd has to be added to Lp) in 
order to include the attenuation with the range, where d is 
the arc distance between the transmitter and the receiver.   

As seen in Fig.4, there exist some ripples in the staircase 
result since it cannot model the terrain as smooth as it 
must be. But it is observed that smaller range steps cause 
smoother result. Also flat earth approximation is used for 



refractivity index in order to involve the effect of the 
earth’s curvature as well as the terrain. 
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Figure 3. The difference between terrain and its staircase 
approximation 
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Figure 4. Top: Concave-convex type terrain Bottom:The 
comparison of path loss calculated with staircase and 
piecewise linear terrain implementations  
 
Characteristic examples are presented to show the 
capabilities of SSPE. In the applications, piecewise linear 
terrain implementation algorithm is used. Two different 
terrain profiles, a smoothly changing Gaussian hill and a 
triangular hill, above which exist both standard and tri-
linear vertical refractivity profiles, are shown in Figs. 5 
and 6. Ground wave propagation over these terrains is 
simulated with SSPE and signal strength vs. range-height 
(200 km to 2350m) plots are depicted for an on-surface 30 
MHz transmitter with a Gaussian vertical source 
distribution (i.e., direct surface wave coupling). The scale 
of the field strength values is also shown in the figures. A 
Neumann type boundary condition at the surface is 
applied. The triangular terrain results in a knife-edge 
diffraction effect. As long as the fields are trapped within 
the paraxial region, propagation over the chosen terrain 

profile in the presence of ducts with arbitrary transverse 
and/or longitudinal refractivity variation can be modelled 
via the SSPE propagator.  
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Figure 5. SSPE-generated range-height field. Bottom: tri-
linear refractivity profile. f=30 MHz on-surface 
transmitter  
 
Another example is chosen to simulate path loss vs. range 
at different frequencies, where, a relatively smooth terrain 
is chosen and signal strength vs. range-height for the same 
source used in Figs. 5 and 6, is also plotted in Fig.7. Here, 
propagation through standard atmosphere including 
earth’s curvature is simulated with SSPE. Range variation 
of |u(z,x)| for surface wave propagation is depicted in 
Fig.7 for four frequencies (5, 15, 30 and 300 MHz). One 
observes that surface wave energy accumulates in front of 
the hill (path loss decreases with range), but diminishes 
beyond the hill (path loss gradient increases with range). 
The higher the frequency, the weaker is the signal beyond 
the hill as expected, as evident for the 300 MHz case. 
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Figure 6. SSPE-generated range-height field. Bottom: tri-
linear refractivity profile. f=30 MHz on-surface 
transmitter  
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Figure 7. |u(z,x)| vs. range for different frequencies, with 
transmitter and receiver on the Neumann boundary 
surface. Standard refractivity dn/dx=117×10-6km-1 is 
assumed above the contoured terrain shown.  
 

IV. CONCLUSIONS 
 

In this study, SSPE technique, which is commonly used in 
modelling of ground wave propagation for more than a 
decade, is explained and the results for complex 
propagation scenarios are outlined. Accurate modelling of   
propagation over irregular terrain is important and 
although there exist diffraction or integral equation 
models to represent the terrain profile, all of these 
techniques assume propagation in a homogeneous or 
linear atmosphere. Nevertheless, the parabolic equation 
methods described here can model the combined effects 
of terrain diffraction and atmospheric refraction. It should 
be noted that, since the standard parabolic equation in (1) 
models forward propagation, SSPE method does not 
include the backscatter effects caused by irregular terrain.  
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