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Abstract 

 
A solution technique for a lossy hydrothermal coordination 
problem with limited-energy-supply thermal units is given. 
The technique is based on first order gradient method. The 
transmission losses are incorporated into the solution 
process via the reference bus penalty factors. These 
reference bus penalty factors are obtained from Jacobian 
matrix that is calculated at the end of Newton-Raphson 
iterations of the load flow calculations.  
 

1.  Introduction 
 
An operation period of a short-term hydrothermal coordination 
problem can range from one day to a week. During the operation 
period, the system load values and the generation units that will 
supply those loads are assumed to be known. The operation 
period is divided into subintervals during which the system load 
values remain constant. The solution to a short-term 
hydrothermal coordination problem gives active power 
generations for all generation units for all subintervals that 
minimize the total thermal cost for the operation period. The 
solution also satisfies all possible electric, hydraulic and fuel 
constraints. 

In the literature, the short-term lossless/lossy hydrothermal 
coordination problem was solved by using various solution 
methods. Some of these methods use dynamic programming [1], 
linear programming and network flow algorithm [2-3], neural 
network algorithm [4], genetic algorithm [5-6], and spot price of 
electricity algorithm [7-9]. We assumed that in the power 
system, the limited energy supply thermal units are fueled under 
take-or-pay fuel contract [10]. 

The solution technique starts the process with a selected 
initial feasible solution then finds another feasible solution by 
changing the determined unit’s active generation for the 
determined subinterval(s), which decreases the initial total 
thermal cost by a certain amount and so on. 

 

2. Formulation of the problem 
 

Mathematical formulation and the expressions to be used for the 
analytical analysis of the problem considered in this paper are 
given below. 
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Please see the list of symbols section for the meaning of the 
symbols that are used in the expressions above. 
 

3. The solution method 
 

From Equation (1), by retaining only the first order derivatives, 
the change in the total thermal cost may be expressed as follows: 
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Since the total fuel amount, which will be consumed by the 
limited energy supply thermal units, is a fixed value in the 
problem at hand, the terms associated with the limited energy 
supply units are not seen in Equation (11). Similarly, the change 
for Equation (2) can be expressed as follows: 
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Since ,load jP  is a constant, it does not appear in the change 

expression. The change for the total loss in the thj  subinterval 
becomes  
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If Equation (13) is substituted in Equation (12) and the 
necessary rearrangements are made, the change in ,Gs ref jP  
becomes 
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Since the reference bus penalty factors are used in the solution 
technique, , ,/ 0loss j Gs ref jP P∂ ∂ =  is taken in the derivation of 

Equation (14). The values of , , ,, ,Gs nj GT lj GH mjβ β β  in Equation 
(14) are defined as follows: 
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They are the inverse of the penalty factors for the thn  normal 
thermal, the thl  limited energy supply thermal and the thm  
hydraulic units in the thj  subinterval, respectively. They are 
also calculated from Jacobian matrix that is found in the load 
flow calculation over the thj  subinterval [10]. The fuel 
consumption rate curves of the limited energy supply thermal 
units are given in terms of their respective active power 
generations as ,( )l j l GT ljA A P= , Tl N∀ ∈ , 1,..., maxj j= . By 

retaining the first order derivatives, the change in ,GT l jP  

expressed in terms of the change in ljA  as:  

, , ,/( ( ) / )GT l j l j l GT l j GT l jP A dA P dPΔ = Δ  (16) 
Similarly, the water discharge rate curves of the hydraulic units 
are given in terms of their respective active power generations 
as ,( )mj m GH mjq q P= , Hm N∀ ∈ , 1,..., maxj j= . The change in 

,GH mjP  can be expressed in terms of the change in mjq  as 
follows: 

, , ,/( ( ) / )GH mj mj m GH mj GH mjP q dq P dPΔ = Δ  (17) 

Substituting ,GT ljPΔ  and ,GH mjPΔ  into Equation (14), a new 

expression for ,Gs ref jPΔ  is obtained. If this new expression of 

,Gs ref jPΔ  is substituted into Equation (11), totalFΔ  is found as: 
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,ref ljγ , ,ref mjδ  seen in Equation (18) are called as pseudo fuel 
and water prices, respectively. They are defined as follows: 

, , , , ,( ( ) / ) /( ( ) / )ref lj ref Gs ref j Gs ref j l GT lj GT ljdF P dP dA P dPγ = ,   
, , , , ,( ( ) / ) /( ( ) / )ref mj ref Gs ref j Gs ref j m GH mj GH mjdF P dP dq P dPδ = (19) 

Depending upon the reached iteration in the solution, the 
coefficient of ,Gs njPΔ  in Equation (18) can be positive or 

negative. On the other hand, the coefficients of l jAΔ  and mjqΔ  
are always negative since the pseudo fuel and water prices and 
the inverse of penalty factors are always positive numbers. 

A new total thermal cost value can be calculated from the 

previous total thermal cost, ( )old
totalF , and the change in the 

previous total thermal cost, ( )old
totalFΔ ,  according to:  

( ) ( ) ( )new old old
total total totalF F F= + Δ  (20) 

The new total thermal generation cost must be smaller than the 
previous one. Therefore, the change in total thermal generation 
cost, ( )old

totalFΔ , is tried to be made as more negative as possible 
in the given solution algorithm. The new active generation (or 
generations), which makes the change in the total thermal cost 
negative, is determined. With this new active generation (or 
generations), a new load flow calculation (or calculations) is 
made in the determined subinterval (or subintervals). This 
process continues until the stopping criterion is satisfied: 

( ) ( 1)( )
total

g g
total total FF F TOL+

Δ− ≤  (21) 

where g and 
totalFTOLΔ  represent an iteration number and a 

selected tolerance value for the total thermal cost decrease, 
respectively. 
 

4. Solution algorithm 
 

Step-1: The iteration number is taken as 0g = . The initial 
active generations in all subintervals are selected in such a way 
that ( )

,
g

GT l jP  values satisfies the constraints given in Equations (4) 

and (9), ( )
,

g
GH mjP  values satisfy the constraints given in Equations 

(5), (6)-(8) and (10), ( )
,

g
Gs njP  values satisfy the constraints given 

in Equation (3) and 
( ) ( ) ( )

, , , ,
s T H

g g g
Gs nj GT lj GH mj load j

n N l N m N
P P P P

∈ ∈ ∈

+ + ≤∑ ∑ ∑ . Load flow 

calculations are done in all subintervals with the selected active 
generations. After that, ( )

,
g

Gs ref jP , ( )
,

g
ref ljγ , ( )

,
g

ref mjδ , ( )
,

g
Gs njβ , ( )

,
g

GT l jβ , 
( )

,
g

GH mjβ , sn N∀ ∈ , Tl N∀ ∈ ,  Hm N∀ ∈ , 1, , maxj j= K , 
( )g

totalF  are calculated. 

Step-2: Determination of the coefficients of ( )
,

g
Gs njPΔ , ( )g

l jAΔ , 
( )g
mjqΔ , sn N∀ ∈ , Tl N∀ ∈ ,  Hm N∀ ∈ ,  1, , maxj j= K  in 

Equation (18). 
Step-2.1: The coefficients of ( )

, , , 1, ,g
Gs nj s maxP n N j jΔ ∈ = K  in 

Equation (18), whose total number is equal to { }s maxS N j× , 
are calculated.  
Step-2.2: For each limited energy supply thermal unit, 
coefficients of ( ) , 1, ,g

lj maxA j jΔ = K  in Equation (18), whose 

total number is equal to maxj , are calculated. Then, the 
coefficients whose absolute values are maximum (the coefficient 
in subinterval Aj + ) and minimum (the coefficient in subinterval 

Aj − ) are determined. 
Step-2.3: For each hydraulic unit, coefficients of 

( ) , 1, ,g
mj maxq j jΔ = K  in Equation (18), whose total number is 

equal to maxj , are calculated, Later, the coefficients, whose 
absolute values are maximum (the coefficient in subinterval 

qj + ) and minimum (the coefficient in subinterval qj − ), are 
determined.  
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Step-3:  Selection of  ( )
,

g
Gs njPΔ , ( )

A

g
ljA

+
Δ  and ( )

A

g
ljA

−
Δ , ( )

q

g
mjq

+
Δ   and  

( )
q

g
mjq

−
Δ  values. 

Step-3.1: If the coefficient of ( )
,

g
Gs njPΔ  is positive, ( )

,
g

Gs njPΔ  is 
taken as negative and also selected according to the following 
expression: 

( ) ( )
, , ,( )g g min

Gs nj s Gs nj Gs nP P PαΔ = − ,  0 1sα< ≤  (22) 

Negative ( )
,

g
Gs njPΔ  is balanced with an opposite and equal change 

(increase) on the active generation of the unit connected to the 
reference bus. At the same time, ( )

, 0g
Gs njPΔ <  causes some 

change (increase or decrease) on the transmission loss in the 
considered power system. This transmission loss change causes 
an equal change (increase or decrease) on the active generation 
of the unit connected to the reference bus. Therefore, 

( )
, 0g

Gs njPΔ <  should satisfy the inequality given below: 
( ) ( )

, , ,( )g max g
Gs nj Gs ref Gs ref jP P PΔ < −  (23) 

If the coefficient of ( )
,

g
Gs njPΔ  is negative, ( )

,
g

Gs njPΔ  is taken as 
positive and also selected according to the expressions, 

( ) ( )
, , ,( )g max g

Gs nj s Gs n Gs njP P PαΔ = −  (24) 
( ) ( )

, , ,( )g g min
Gs nj Gs ref j Gs refP P PΔ < −  (25) 

sα  in Equations (22) and (24) is a coefficient between 0 and 1 
(inclusive). 
Step-3.2: Since the coefficient of ( )

A

g
ljA

+
Δ  (maximum as an 

absolute value) is negative, ( )
A

g
ljA

+
Δ  and ( )

A

g
ljA

−
Δ  are taken as 

positive and negative and also selected according to the 
following expressions: 

( ) ( )( )
A A

g max g
lj T l ljA A Aα

+ +
Δ = − , 0 1Tα< ≤  (26) 

( ) ( )( / )
A A A A

g g
lj j j ljA t t A

− + − +
Δ = Δ  (27) 

( ) ( )( )
A A

g g min
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− −
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A

A
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GT lj Gs ref j Gs ref

g max g
GT lj Gs ref Gs ref j

P P P

P P P
+

−

Δ < −
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 (29) 

( ) 0
A

g
ljA

+
Δ >  and ( ) 0

A

g
ljA

−
Δ <  in the above equations represent 

changes in the rate of consumed fuel amounts by the thl  limited 
energy supply thermal unit in the direction of increase and 
decrease in subintervals Aj +  and Aj − , respectively. 

( )
, 0

A

g
GT ljP

+
Δ >  and ( )

, 0
A

g
GT ljP

−
Δ <  represent increase and decrease 

on the active generation powers of the thl  limited energy supply 
unit corresponding to ( )

A

g
ljA

+
Δ  and ( )

A

g
ljA

−
Δ  in subinterval Aj +  and 

Aj − , respectively. max
lA  and min

lA  denote the maximum and 

minimum rate of consumed fuel amount by the thl  limited 
energy supply thermal unit, respectively. They are calculated as: 

,( )max max
l l GT lA A P= , ,( )min min

l l GT lA A P=  (30) 
Since the new solution shall be a feasible solution, the increased 
and decreased fuel amounts in subintervals  Aj +  and Aj −  must 

be equal (
A A A Aj lj j ljt A t A

+ + − −
Δ = Δ ). Therefore, the absolute 

value of the decreased fuel amount in subinterval Aj −  is 

determined by using Equation (27). The upper limit for 
AljA

−
Δ  

is given in Equation (28).  
Since the coefficients of 

A Aj l jt A
+ +
Δ  and 

A Aj l jt A
− −
Δ  are negative, 

the first and second terms cause a decrease and increase 
(since ( ) 0

A

g
l jA

−
Δ < ) in the total thermal cost, respectively. Since 

the coefficient of the first term is selected as more negative than 
the second term’s coefficient, there will be a net decrease in the 
total thermal cost if the selections are made as described.  

By using the selected ( )
A

g
l jA

+
Δ , ( )

A

g
l jA

−
Δ , the new rate of 

consumed fuel amounts are calculated according to: 
( 1) ( ) ( ) ( 1) ( ) ( ),

A A A A A A

g g g g g g
l j l j l j l j l j l jA A A A A A

+ + + − − −

+ += + Δ = + Δ  (31) 

Step-3.3: Since the coefficient of ( )
q

g
mjq

+
Δ  (maximum as an 

absolute value) is negative, ( )
q

g
mjq

+
Δ  and ( )

q

g
mjq

−
Δ  are taken as 

positive and negative and also selected according to the 
following expressions: 

( ) ( )( )
q q

g max g
mj H mj mjq q qα

+ +
Δ = − , 0 1Hα< ≤  (32) 

( ) ( )( / )
q q q q

g g
mj j j mjq t t q

− + − +
Δ = Δ  (33) 

( ) ( )( )
q q

g g min
mj mj mq q q

− −
Δ ≤ −  (34) 

( ) ( )
, , ,

( ) ( )
, , ,

( ),

( )

q

q

g g min
GH mj Gs ref j Gs ref

g max g
GH mj Gs ref Gs ref j

P P P

P P P

+

−

Δ < −

Δ < −
 (35) 

( )
, 0

q

g
GH mjP

+
Δ >  and ( )

, 0
q

g
GH mjP

−
Δ <  in Equation (35) represent the 

amount of increase and decrease in the active power generations 
of the thm  hydraulic unit, which correspond to ( ) 0

q

g
mjq

+
Δ >  and 

( ) 0
q

g
mjq

−
Δ < , in subintervals qj +  and qj − , respectively. Again, 
since the new solution shall be a feasible one, the decrease on 
the water discharge rate of the thm  hydraulic unit is calculated 
according to Equation (33).  The effect of the selections given in 
this step on the total thermal cost is the same as the one just 
described in step-3.2. 
 If hydraulic unit m, whose water discharge rate values are to 
be changed, has already hit into its reservoir constraints in some 
intervals in the current iteration as shown in Figure 1, the 
absolute maximum and minimum valued coefficients for this 
unit must be selected according to the following rules [10]:  
 

1) The absolute maximum and minimum valued coefficients 
can be selected from the same region. Since the net change in 
the spent water amount in the selected region is going to be zero, 
the reservoir constraints will not be violated. 
2) If the absolute maximum and minimum valued coefficients 
shall be selected from different regions, this selection should be 
made in such a way that the reservoir constraints become 
unreachable anymore. For example, if the absolute minimum 
valued coefficient is selected from region-1, the absolute 
maximum valued coefficient should be selected from region-2. 
The effect of such a selection makes the lower and upper 
reservoir limits at the end of region-1 and region-2 unreachable. 

By using the selected ( )
q

g
mjq

+
Δ  and ( )

q

g
mjq

−
Δ , the new discharge 

rate values are calculated as follows: 
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Figure 1. Change in the water amount of the thm  hydraulic 
unit’s reservoir at the end of the thg  iteration. 

 

( 1) ( ) ( ) ( 1) ( ) ( ),
q q q q q q

g g g g g g
mj mj mj mj mj mjq q q q q q

+ + + − − −

+ += + Δ = + Δ  (36) 
By using the new water discharge rate values, the new stored 
water amounts in the reservoir in subintervals qj +  and qj −  are 
calculated according to: 

( 1) ( ) ( 1)
1 ( )

q q q q q

g g g
mj m j mj mj jV V r q t

+ + + + +

+ +
−= + −  (37) 

( 1) ( ) ( 1)
1 ( )

q q q q q

g g g
mj mj mj mj jV V r q t

− − − − −

+ +
−= + −  (38) 

They should satisfy the following volume constraints. 
( 1)

q

min g
m mjV V

+

+≤ , ( 1)
q

g max
mj mV V

−

+ ≤  (39) 

If there is another hydraulic unit after the thm  hydraulic unit’s 
reservoir (on the same river), the new water discharge rate 
values should satisfy the constraints given below: 

( 1) ( ) ( 1) ( )
1 ( )

q q q q q

g g g g
d j d j mj d j jV V q q t

+ + + + +

+ +
−= + −  (40) 

( 1) ( ) ( 1) ( )
1 ( )

q q q q q

g g g g
d j d j mj dj jV V q q t

− − − − −

+ +
−= + −  (41) 

( 1)
q

min g
d d jV V

+

+≤ , ( 1)
q

g max
dj dV V

−

+ ≤  (42) 

Index d in Equations (40)-(42) is the number of a hydraulic unit 
being serially coupled with hydraulic unit m. In writing 
Equations (40) and (41), it is assumed that water discharged by 
the thm  hydraulic unit reaches the thd  hydraulic unit’s 
reservoir directly without any time lag.  
Step-4: Determination of the unit whose active generation 
power is to be changed. 
 Step-4.1: For the normal thermal units, 

( )
, , , 1, ,g

Gs nj s maxP n N j jΔ ∈ = K , which is selected in step-3.1, 
their corresponding coefficients, which is calculated in step-2.1, 
and their corresponding subinterval time lengths are multiplied. 
Among those { }s maxS N j×  products, the most negative valued 

one is selected. Let us assume that it contains ( )
,

g
Gs aja

PΔ . 

Step-4.2: Tl N∀ ∈ , ( )
A

g
ljA

+
Δ  and ( )

A

g
ljA

−
Δ , which are selected in 

step-3.2, their corresponding coefficients, which are calculated 
in step-2.2, and their corresponding subinterval time lengths are 
multiplied. For each limited energy supply thermal unit, these 
two product terms are added. Among those { }TS N  summation 
terms, the most negative valued one is selected. Let us assume 
that it contains ( )

b

g
bjA

+
Δ  and ( )

b

g
bjA

−
Δ . 

Step-4.3: Hm N∀ ∈ , ( )
q

g
mjq

+
Δ  and ( )

q

g
mjq

−
Δ , which are selected in 

step-3.3, their corresponding coefficients, which are calculated 
in step-2.3, and their corresponding subinterval time lengths are 
multiplied. For each hydraulic unit, these two product terms are 
added. Among those { }HS N  summation terms, the most 

negative valued one is selected.  Let us assume that it contains 
( )

c

g
cjq

+
Δ  and ( )

c

g
cjq

−
Δ . 

Step-4.4: Consequently, among those three terms determined in 
steps-4.1, 4.2 and 4.3, the most negative valued one (making the 
biggest decrease in the total thermal cost) is chosen.  
Step-4.4.1: If the term determined in step-4.4 contains ,Gs aja

PΔ , 

the tha  normal thermal unit’s new active power generation in 
subinterval aj  is calculated as follows: 

( 1) ( ) ( )
, , ,a a a

g g g
Gs aj Gs aj Gs ajP P P+ = + Δ  (43) 

With the new ( 1)
, a

g
Gs ajP +  value, a power flow calculation is carried 

out in subinterval aj  and, the new values of ( 1)
, a

g
Gs ref jP + , ( 1)

,
g

ref lja
γ + , 

( 1)
,

g
ref mja
δ + , ( 1)

, a

g
Gs njβ + , ( 1)

,
g

GT lja
β + , ( 1)

,
g

GH mja
β + , sn N∀ ∈ , Tl N∀ ∈ , 

Hm N∀ ∈ , ( 1)g
totalF +  are calculated. 

Step-4.4.2: If the term determined in step-4.4 contains ( )
b

g
bjA

+
Δ  

and ( )
b

g
bjA

−
Δ , the thb  limited energy supply thermal unit’s new 

fuel consumption rate values in subintervals bj +  and bj −  are 
calculated according to: 

( 1) ( ) ( ) ( 1) ( ) ( ),
b b b b b b

g g g g g g
bj bj bj bj bj bjA A A A A A

+ + + − − −

+ += + Δ = + Δ  (44) 

The new active power generation values of the thb  limited 
energy supply thermal unit in subintervals bj +  and bj −  

( ( 1)
, b

g
GT bjP

+

+  and ( 1)
, b

g
GT bjP

−

+ ) are calculated from the unit’s fuel 

consumption rate curve by using ( 1)
b

g
bjA

+

+  and ( 1)
b

g
bjA

−

+ . With the 
new active generation values, load flow calculations are carried 
out in subintervals bj +  and bj −  and, the new values of 

( 1)
, b

g
Gs ref jP

+

+ , ( 1)
, b

g
Gs ref jP

−

+ , ( 1)
,

g
ref ljb
γ

+

+ , ( 1)
,

g
ref ljb
γ

−

+ , ( 1)
,

g
ref mjb
δ

+

+ , ( 1)
,

g
ref mjb
δ

−

+ , 
( 1)

, b

g
Gs njβ

+

+ , ( 1)
, b

g
Gs njβ

−

+ , ( 1)
, b

g
GT ljβ

+

+ , ( 1)
, b

g
GT ljβ

−

+ , ( 1)
, b

g
GH mjβ

+

+ , ( 1)
, b

g
GH mjβ

−

+ , 

sn N∀ ∈ , Tl N∀ ∈ , Hm N∀ ∈ , ( 1)g
totalF +  are calculated. 

Step-4.4.3: If the term determined in step-4.4 contains ( )
c

g
cjq

+
Δ  

and ( )
c

g
cjq

−
Δ , the thc  hydraulic unit’s new water discharge rate 

values in subintervals cj +  and cj −  are calculated as follows: 
( 1) ( ) ( ) ( 1) ( ) ( ),

c c c c c c

g g g g g g
cj cj cj cj cj cjq q q q q q

+ + + − − −

+ += + Δ = + Δ  (45) 

The new active power generation values of the thc  hydraulic 
unit in subintervals cj +  and cj −  ( ( 1)

, c

g
GH cjP

+

+  and ( 1)
, c

g
GH cjP

−

+ ) are 
calculated from the unit’s water discharge rate curve by using 

( 1)
c

g
cjq

+

+  and ( 1)
c

g
cjq

−

+ . With the new active generation values, load 

flow calculations are carried out in subintervals cj +  and cj −  

and, the new values of ( 1)
, c

g
Gs ref jP

+

+ , ( 1)
, c

g
Gs ref jP

−

+ , ( 1)
,

g
ref ljc
γ

+

+ , ( 1)
,

g
ref ljc
γ

−

+ , 
( 1)

,
g

ref mjc
δ

+

+ , ( 1)
,

g
ref mjc
δ

−

+ , ( 1)
, c

g
Gs njβ

+

+ , ( 1)
, c

g
Gs njβ

−

+ , ( 1)
, c

g
GT ljβ

+

+ , ( 1)
, c

g
GT ljβ

−

+ , 
( 1)

, c

g
GH mjβ

+

+ , ( 1)
, c

g
GH mjβ

−

+ , sn N∀ ∈ , Tl N∀ ∈ , Hm N∀ ∈ , ( 1)g
totalF +   

are calculated.  
Step-5: The stopping criterion given in Equation (21) is checked 
as follows: 
If ( ) ( 1)( ) 0g g

total totalF F +− < , then the used α  coefficient (either 
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sα or Tα  or Hα ) in step-4 is decreased a certain amount and 
returned to step-3 by retaking the active generations at the 
beginning of the current iteration. If 

( ) ( 1)( )
total

g g
total total FF F TOL+

Δ− > , then the iteration number is 

incremented by one ( 1g g= + ) and the solution process 

proceeds by returning to step-2. If ( ) ( 1)( )
total

g g
total total FF F TOL+

Δ− ≤ , 
then the solution process is stopped and the solution is obtained. 
 

5. Conclusion and discussion 
 

A solution technique based on first order gradient method for a 
lossy short-term hydro thermal scheduling problem with limited 
energy supply units is given. The solution technique is tested on 
an example electric power system with 16 buses, 2 limited 
energy supply, 3 normal thermal and 4 hydraulic (coupled) 
units. The problem is solved first under the constraint where the 
minimum total fuel amount consumed by the limited energy 
supply units is fixed by the take-or-pay fuel agreement. In the 
second solution, the fuel constraint is ignored. It is shown that 
considering the fuel constraint in the solution process can reduce 
the total thermal cost further. 
 All kinds of constraints in the considered problem can be 
controlled very easily by the given solution technique. Since it 
starts with a feasible solution and reaches the optimal solution 
going from one feasible solution to another by making some 
decrease in the total thermal cost, all intermediate solutions are 
also feasible and can be applied to the power system under 
consideration. Ramp rates of the power plants are not considered 
in the given solution technique. 
 Detailed explanation of the example solution can not be given 
here due to lack of space. It is going to be given during the 
presentation. 
 

6. List of symbols 
 

R = A fictitious monetary unit. 
totalF  = Total thermal cost ( )R . 

ref  =  Reference bus to which a normal thermal generation unit 
is connected. 

, maxj j  = Subinterval index and number of subintervals, 
respectively. 

jt  =  Length of subinterval  j, (h). 

, , ,, ,Gs nj GT lj GH mjP P P  = Active generations of the thn  normal 

thermal, the thl  limited energy supply thermal and the thm  
hydraulic units in the thj  subinterval, (MW). 

, ,( ) , ( )nj Gs nj lj GT ljF P F P  = Cost rates of the thn  normal thermal 

and the thl  limited energy supply thermal units in the thj  
subinterval, respectively, (R/h). 

, ,,load j loss jP P = Total system active load and loss in the thj  
subinterval, respectively, (MW). 

,( )lj GT ljA P  = Fuel consumption rate for the thl  limited energy 

supply thermal unit in the thj  subinterval, (ton/h, m3/h, ccf/h, 
etc). 

totalA  = Minimum total fuel amount that should be spent by all 
limited energy supply thermal units during the operation period, 

3( ,ton m , ccf , .)etc . 

,( )mj GH mjq P  = Water discharge rate of the thm  hydraulic unit in 

the thj  subinterval, (acre-ft/h).  

,total mq  = Total water amount to be used by the thm  hydraulic 
unit during the operation period, (acre-ft). 

mjV  = Stored water amount in the thm  hydraulic unit’s reservoir 

at the end of the thj  subinterval, (acre-ft). 

,init end
m mV V  = Starting and final water amounts in the thm  

hydraulic unit’s reservoir, respectively, (acre-ft). 

mjr  = Inflow water rate into the thm  hydraulic unit’s reservoir 

in the thj  subinterval, (acre-ft/h). 
, ,s T HN N N  = Sets containing all normal thermal (except the 

one connected to the reference bus), limited energy supply 
thermal and hydraulic units in a given power system, 
respectively.  

{ }sS N , { }TS N , { }HS N = Number of normal thermal 
(except the one connected to the reference bus), limited energy 
supply thermal and hydraulic units in a given power system, 
respectively.  
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