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Abstract 

 
We apply the mode-matching method to the electrostatic 
analysis of shorted enclosed-cable trays that are generally 
used in industrial facilities such as nuclear power plants. In 
mode-matching formulation on the potential distribution, we 
utilize Laplace’s equation and superposition principle. After 
obtaining modal coefficients from Dirichlet and Neumann 
boundary conditions, we then derive the potential and 
electric field distributions and the capacitance matrices to 
evaluate the electromagnetic influence due to a short 
accident. 

 
1. Introduction 

 
The cable trays have been employed to protect and isolate the 

power and communication cables from physical and 
electromagnetic damage and fire attacks in industrial facilities 
such as a nuclear power plant [1], [2]. Based on the 
configuration, the cable trays are divided into ladder-type, 
perforated-type, and solid-bottom-type, etc. To improve the 
isolation and protection performances, either the enclosed cable 
tray or the physical and electromagnetic barrier can be utilized 
[1], [2]. 

In this paper, we analyze the electromagnetic influence from 
the shorted enclosed-cable trays used for intelligent pressure 
transmitters in nuclear power plants. We assume that two 
enclosed-cable trays without connection to the ground are 
located between both lateral walls and shorted by the inner leaky 
cables. To derive the potential and electric field distributions 
and the capacitance matrices in the variation of geometrical 
parameters, we utilize the mode-matching method [3]. Since the 
wavelength in the operating frequency of the used power cables 
is generally large (about 5000 km in the operating frequency of 
60 Hz) in comparison with the dimension of the analyzed 
regions, the electrostatic analysis can be valid in our approach. 
Among the investigated results, the resulted capacitance matrix 
generally indicates how much the enclosed-cable trays is 
influenced from adjacent another tray and lateral walls in a short 
accident. Note that the novelty of this research is the estimation 
of the electromagnetic influence from the shorted enclosed-cable 
trays. In what follows, we show a brief mode-matching 
formulation on the potential distribution and boundary 
conditions for simultaneous equations 

 
2. Mode-matching formulation 

 
Fig. 1 illustrates the cross section of two enclosed-cable trays 

with w1 × h m2 and w2 × h m2 that are long along the y−axis. The 
enclosed-cable trays are separated from each other with the 

distance s and apart from the lateral walls with the distances d1 
and d2, respectively. As shown at the bottom of Fig. 1, due to the 
short by the inner leaky cables, the potentials V1 and V2 are 
applied to both enclosed-cable trays, respectively. The analyzed 
regions around the enclosed-cable trays are specifically 
composed of 5 different regions (Regions I to V). Based on the 
superposition principle, it is tractable that the original problem is 
considered the decomposed three problems in Fig. 2 where the 

00 0Region I Region IIIRegion II 0

Region IV

Region V

(a) 
 

00 V1Region I Region IIIRegion II 0

Region IV

Region V

(b) 
 

00 0Region I Region IIIRegion II V2

Region IV

Region V

(c) 
 

Fig. 2. Equivalent problem based on the superposition 
principle: (a) case 1, (b) case 2, and (c) case 3. 
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Fig. 1. Cross section of the shorted enclosed-cable trays. 
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potentials on the enclosed-cable trays have (0, 0) in case 1, (V1, 
0) in case 2, and (0, V2) in case 3, respectively. In addition, each 
case in Fig. 2 satisfies Laplace’s equation as 
 
 2 ( , ) 0x z∇ Φ = . (1) 
 
Thus, the superposition principle and the Laplace’s equation 
yield the potential expression in each region as 
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where the subscript of Φ indicates each region, m1 = n1π / (x2 – 
x1), m2 = n2π / (x4 – x3), m3 = n3π / (x6 – x5), m4 = n4π / (x6 – x1), 
m5 = n5π / (x6 – x1), and 
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To determine the unknown modal coefficients A1, A2, A3, A4, A5, 
B1, B2, and B3, the Dirichlet conditions for the continuity of 
potentials and the Neumann conditions for the continuity of 
normal derivatives of the potentials at z = h are  represented as, 
respectively, 
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Then equations (7)−(10) for the Dirichlet and Neumann 
conditions respectively yield  
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For the bottom regions, it is possible to enforce the boundary 
conditions at z = 0 through the similar procedure. The results 
from the enforcement of boundary conditions at z = 0 and z = h 
constitute a set of simultaneous equations for obtaining the 
modal coefficients A1, A2, A3, A4, A5, B1, B2, and B3. The modal 
coefficients are calculated efficiently after truncating the infinite 
series in the simultaneous equations. 

 
3. Computation results 

 
The numerical computation was performed using Matlab 

program language. In our computation, it is important to 
determine the proper truncation number to ensure convergence 
of the potential values since the excessive series for the 
potentials require much computing time. After verifying the fast 
convergence, we derived the potential and electric field 
distributions and the capacitance matrices. 

 
3.1. Potential and electric field distribution 

 
The electric field distribution can be computed from the 

gradient of the potential as [3] 
 

 ( , ) ( , )E x z x z=−∇Φ . (15) 
 

Figs. 3 and 4 show the electric field strength of x−component 
(Ex) and z−component (Ez) for the shorted enclosed-trays with 
the applied potentials of V1 = −1 and V2 = 1 where the geometry 
parameters are w1 = s = w2 = 5 m and d1 = d2 = 10 m. The 
electric fields are normalized by the absolute potential 
difference |V2 – V1| between two enclosed-trays. Due to the 
symmetry with respect to y−z plane, both results in Figs. 3 and 4 
are seen to be symmetrical distributions.  

In Fig. 3, the equivalent potential lines are dense between 
two enclosed-trays (in Region II), which results in strong 
electric field and electromagnetic coupling. In addition, the 
equivalent potential lines are tilted to the direction of the lateral 
walls that indicates the distance d1 and d2 are also the important 
factors influencing on the nearby enclosed-cable trays 
electromagnetically. Fig. 4 shows the investigation of the 
electric field strength calculated by (15). As expected, Ex is 
forceful at the gap between both enclosed-trays (Region II) and 
in the space between the enclosed-trays and the lateral walls 
(Regions I and III). These investigated results would be able to 
provide proper geometry about the distances d1, s, and d2 to 
avoid the unwanted electromagnetic interference (EMI) 
problems. 

 
3.2. Capacitance matrix 

 
Computation was performed to examine the capacitance 

matrix because it also indicates the electrostatic influence on 
adjacent objects. The capacitance matrix C is defined as [4] 
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where each component for the symmetric structure is obtained 
as 
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Herein both Q1 and Q2 represent the charge accumulation per 
unit length (m) on the shorted enclosed-cable trays 1 and 2, 
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Fig. 4. Distribution of electric field strength: (a) 
x−component (Ex) and (b) z−component (Ez) of electric field 
strength (w1 = s = w2 = 5 m, d1 = d2 = 10 m, V1 = −1, and V2 
= 1). 
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Fig. 3. Potential distribution (w1 = s = w2 = 5 m, d1 = d2 = 10 
m, V1 = −1, and V2 = 1). 
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respectively, and are calculated using the integral form of 
Gauss’s law as 
 

 0 1,2
1,2 1,2Tray Tray

D dl E dl Qε⋅ = ⋅ =∫ ∫  (17) 

 
Figs. 5 and 6 show the capacitance matrices when both 

shorted enclosed-cable trays are close to each other horizontally 
and vertically, respectively. To reveal electrostatic influence 
only between both shorted cable trays excluding that from the 
lateral walls, the distances d1 and d2 were set the infinite 
distance (over 10 times distance of 2T + s). In Figs. 5 and 6, the 
capacitances C11 and C21 are shown to be enlarged when the 
height of the cable trays increases from T / 4 (case 1) to T / 2 
(case 3) as well as the ratio s / T decreases. The investigated 
results reveal that the separation distance s should be 
significantly considered in the place with the accumulated the 
cable trays in order to avoid the EMI problems. 

 
In Fig. 7, we investigated the capacitance C11 and C21 

corresponding to variation in the distance d (= d1 = d2) in cases 1 
in Figs. 5 and 6 for evaluating the effect from the lateral walls. 
In both cases 1, the capacitance C11 is shown to be increased 
whereas the capacitance C21 is shown to be decreased when the 
lateral walls approach to the shorted enclosed-cable trays. The 
deviation between the capacitances C11 and C21 gives a clue 
about the favorable placement of the grounded structure to 
alleviate the undesirable electromagnetic coupling from nearby 
objects. 

 
4. Conclusions 

 
The mode-matching method was applied to the electrostatic 

analysis of the shorted enclosed-cable trays for the intelligent 
pressure transmitter in nuclear power plants. The mathematical 
expressions with the unknown modal coefficients for potential 
distribution were formulated based on Laplace’s equation and 
superposition principle. The modal coefficients with the proper 
truncation number were then determined from the Dirichlet and 
Neumann boundary conditions. Using the obtained modal 
coefficients, we investigated the potential and electric field 
distributions and the capacitance matrices corresponding to the 
change in placement of the shorted cable trays and the lateral 
walls. The investigated results offer the useful information to 
avoid EMI problems in nuclear power plants. 
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