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Abstract 
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This paper presents score normalization for recently 

proposed modeling technique, vector quantization   

universal background model (VQ-UBM) based speaker 

verification of cellular data. Test-normalization (TNorm) 

which is the most widely used score normalization technique, 

is evaluated for VQ-UBM based speaker verification.

Experimental results using NIST 2002 Speaker Recognition 

Evaluation (SRE) (one-speaker detection task) show that 

score normalization improves the verification performance 

and VQ-UBM provides better recognition accuracy than 

support vector machines   generalized linear discri minant 

sequence kernel (SVM-GLDS), which is one of the state-of-

the-art modeling techniques for speaker verification, in terms 

of both, Equal Error Rate (EER) and Minimun Detection 

Cost Function (MinDCF). 
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1. Introduction 
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Speaker recognition aims to find the identity of a speaker 

given a speech sample. It is a challenging task with many 

variable factors which affect the system performance such as 

transmission channel, length of train/test utterance, session 

variability, etc. these variabilities can be speaker-dependent, in 

which the variability comes from the speaker and test-

dependent, when the variability comes from the test data [1]. 

These variabilities have a negative impact on the system 

performance and compensation techniques can be used to reduce 

these negative effects. 

In the literature different compensation techniques at three 

different levels have been proposed. Compensation can be in 

feature level, score level and model level. Feature level methods 

aim at removing the negative effects of transmission channels 

from the feature vectors. The most widely used techniques of 

feature level compensations are cepstral mean subtraction 

(CMS) [2] and RASTA filtering [3]. CMS is used for 

compensation of linear channel variations. RASTA is a filtering 

approach which aims to reduce convolutional noise which exists 

in the transmission channel. Another feature level compensation 

technique was proposed by Reynolds which maps feature 

vectors into a channel independent space to mitigate channel 

effects [4]. Score level techniques aim to remove score scales 

and shifts caused by varying transmission channel conditions. 

These methods have been proposed to deal with score variability 

and to select more robust and effective speaker-independent 

threshold. The well-known score domain techniques are Hnorm 

[5], Tnorm and Znorm [6]. Model level compensation attempts 

to minimize the effects of varying channels by modifying the 

verification models such as Speaker Model Synthesis [7]. 

State-of-the-art speaker recognition systems use Maximum a 

Posteriori (MAP) adapted modeling techniques. MAP adapted 

Gaussian mixture models with universal background model 

(GMM-UBM) has been the most popular modeling algorithm 

[5]. In GMM-UBM method a background model is created from 

a set of background speakers which are not included in training 

speakers via conventional expectation maximization (EM) 

algorithm and then speaker models are constructed from the 

background model by MAP adaptation. Recently Hautamaki et. 

al. introduced MAP adaptation of vector quantization (VQ-

MAP or VQ-UBM) which adapts the centroid vectors via MAP 

algorithm and it has been reported that VQ-UBM algorithm 

provides recognition accuracy as good as GMM-UBM with a 

significant speed-up [8], [9].  

In this paper we focus on score level compensation 

techniques for VQ-UBM based speaker recognition system. To 

the best of our knowledge there is no previous study which 

investigates the score level compensation techniques on this new 

modeling algorithm. Well known TNorm method is evaluated 

on VQ-UBM based speaker recognition and compared with 

another well-known and popular modeling technique, support 

vector machines-generalized linear discriminant sequence kernel 

(SVM-GLDS) [10].  

The organization of our paper is as follows. In section 2, VQ-

UBM method is described. SVM-GLDS method is briefly

explained in section 3. Section 4 describes the application of 

TNorm technique to VQ-UBM and SVM-GLDS. In section 5, 

speaker verification setup is described and the experimental 

results are given in section 6. Finally, the conclusions are 

summarized in section 7. 
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2. VQ-UBM 
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The general structure of VQ-UBM based speaker recognition 

system is shown in Figure 1. As seen from the figure VQ-UBM 

algorithm first creates a background model (UBM) from the 

background data which consists of several speech samples from 

different speakers taken from a database not used in the 

training/test set of speaker recognition database. UBM model is 

created using conventional clustering algorithm such as K-

means. Obviously, the UBM model is a codebook which

consists of M centroids (M is called model order of codebook 

size), },...,,{ 21 MuuuU = , generated by clustering algorithm. 

After UBM model is created the speaker is trained using features 

computed from training speech sample of speaker and UBM 

model by using MAP adaptation. Output of the training step of 

the algorithm is the codebook of speaker with M centroids, 

},...,,{ 21 McccC = , which is defined as speaker model. VQ-
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UBM algorithm iteratively adapts the centroid vectors, ic , using 

UBM centroids, ju , by MAP algorithm.  

In the recognition phase, feature vectors computed from the 

speech sample of unknown speaker are scored against UBM 

model, U , and claimed speaker model, C , and if the match 

score above a pre-defined threshold identity claim is accepted by 

the system or if the score is below the threshold unknown 

speaker is rejected. The match score between unknown feature 

set, },...,,{ 21 TxxxX = and UBM model,U , and speaker model, 

C , is computed by the following formula:  

),(),( CXMSEUXMSEScore −=                      (1) 

where, MSE is the Mean Square Error and computed as: 
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where X denotes the number of vectors in the set of X, and 

2
ki yx − is the squared Euclidean distance between the vectors, 

ix and ky . For more details about the algorithmic description of 

VQ-UBM method readers are referred to [8], [9]. 
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Fig. 1. General structure of VQ-UBM based speaker recognition 

system 
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3. Support Vector Machines 
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Support vector machines (SVM) have become a powerful 

technique for pattern classification applications. It has gained so 

much popularity in recent years. SVM is a discriminative 

classifier which models the boundary between two classes. 

Since speaker verification is also a two-class problem, SVM has 

proven to be one of the most powerful techniques in speaker 

recognition. The most important problem for speech 

applications using SVM is the amount of training and test data. 

Since speech is not a static signal, the features are extracted 

from shifted short-time frames (typical frame duration is 20-30 

ms with 10-15 ms frame shift), and this yields a set of feature 

vectors not a single vector for a speech sample. This results in 

long training times for SVM approach. There are several studies 

in literature which focus on this problem [11], [12].  In recent 

years, use of sequence kernels for application of SVM in speech 

processing has gained more attention. Sequence kernel basically 

maps the set of training/test feature vectors into a single 

characteristic vector and trains the SVM by using this vector 

and scoring is a simple dot product. One of the most powerful 

sequence kernel method for speaker and language recognition is 

the generalized linear discriminant kernel (GLDS) [10]. The 

GLDS method creates a single vector (also known as 

supervector) by mapping the set of feature vectors into kernel 

space using a polynomial expansion [13]. As an example, 

second-order polynomial expansion of a 2-dimensional vector 
txxx ],[ 21= is given by txxxxxxxb ],,,,,1[)( 2

221
2
121= . During 

training, all the background and speaker features, 

},...,,{ 21 TxxxX = , are represented by average expanded feature 

vectors, which is computed by: 
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The averaged vectors of background data and training speaker 

data are assigned with the appropriate label for SVM training 

(+1 for target speaker vectors and -1 for background vectors). 

The output of the SVM training is a set of support vectors, ib , 

their weights, iα , and a bias term d . These are collapsed into a 

single model vector by: 
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where svN and }1,1{ −+∈it are the the number of support 

vectors and ideal outputs, respectively. 

During the recognition phase of SVM-GLDS, the match

score in the GLDS method is computed as an inner product: 

test
t

ett bwScore arg=                                 (5) 

where ettw arg  and testb are the model vector of the target 

speaker and averaged expanded feature vector of the test sample, 

respectively. Since all speaker models, train and test data are 

represented by single vectors, the recognition phase is 

computationally efficient. The details about the SVM-GLDS can 

be found in [10], [13]. 
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4. Application of TNorm 
1 blank line using 9-point font with single spacing

The last step in a speaker verification system is the decision 

making. This is done by comparing the match score with a 

threshold. If the score is higher than the threshold, identity claim 

is accepted, otherwise rejected. The score normalization 

techniques aim to tune decision thresholds. It is known that the 

scores of speaker verification trials vary a lot. The variability of 

scores come from different sources such as phonetic content of 
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speech sample, channel noise, duration of the speech sample, 

speaker’s health, emotion, age, etc. [14]. To avoid these 

problems score normalization is applied to make it easier to tune 

speaker-independent decision threshold. 

General structure of TNorm method is shown in Figure 2. 

TNorm works as follows: given a set of feature vectors 

},...,,{ 21 TxxxX =  extracted from a test speech sample, and a 

speaker model λ (C for VQ-UBM and w for SVM-GLDS), a 

match score, ),( λXS , between X and λ is computed. TNorm 

uses a set of cohort models (also known as impostor models) 

{ }Nθθθ ,...,, 21=Φ  to obtain impostor 

scores )},(),....,,(),,({ 21 NTNorm XSXSXSS θθθ= . Then the 

speaker verification scores are normalized by: 

TNorm

TNorm
TNorm

XS
XS

σ

µλ
λ

−
=
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),(                       (6) 

where TNormµ and TNormσ  are the mean and standard deviation 

of the impostor scores TNormS . Obviously, TNorm assumes that 

scores have a Gaussian distribution and centers the score 

distribution. More details about the TNorm can be found in [6].  

Fig. 2. TNorm score normalization method 
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Fig. 3. Effect of TNorm on score distributions. 
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Figure 3 shows the effect of TNorm on score distribution of a 

VQ-UBM based speaker recognition system. It can be seen from 

figure that after TNorm the impostor score distribution has zero 

mean and unit standard deviation. The intersection of target and 

impostor score distributions causes the wrong decisions and 

after TNorm there are less number of scores in this region so the 

performance is improved. In our application we select a set of 

speakers which doesn’t exist in the background database and 

speaker recognition database for TNorm models. For the VQ-

UBM codebook and for the SVM case the model vector, w for 

each TNorm speaker corresponds to a TNorm model. 

5. Speaker Verification Setup 
1 blank line using 9-point font with single spacing

We use NIST 2002 speaker recognition evaluation (SRE) 

database for the speaker verification experiments [15]. Database 

contains speech samples transmitted over different cellular 

networks. NIST 2002 contains 139 male and 191 female 

speakers and consists of 2982 target and 36277 impostor trials. 

For each speaker two minutes of speech data is available for 

training. The duration of test files varies between 15 seconds to 

45 seconds. The gender-dependent background models and 

TNorm models are created using NIST 2001 SRE. 

We use standard MFCC features as speaker-specific features. 

MFCC extraction algorithm is as follows: discrete Fourier 

transform (DFT) magnitude spectrum of 30 ms hamming

windowed frames is computed in every 15 ms. Magnitude 

spectrum is smoothed by a 27-channel triangular filterbank. The 

logharithmic filterbank outputs are converted into MFCCs by 

discrete Cosine transform (DCT). We use first 12 MFCCs. The 

first and second order derivatives (also known as delta and 

double deltas) of the MFCC features are appended to original 

features which yields 36-dimensional feature vectors. The last 

step is the cepstral mean and variance normalization (CMVN).  

We use two standard metrics as the speaker recognition 

performance criteria: equal error rate (EER) and minimum 

detection cost function (MinDCF). EER corresponds to 

threshold at which the miss rate ( missP ) and false alarm rate 

( faP ) are equal; MinDCF is the minimum value of a weighted 

cost function given by famiss PP ×+× 99.01.0 . All reported 

MinDCF values are multiplied by 100 for ease of comparison. 

These two metrics are the most well-known criteria in speaker 

recognition community. Additionally, a few selected detection 

error tradeoff (DET) curves are plotted in order to see the full 

behavior of the false alarms and miss detections of the proposed 

systems. For VQ-UBM based system we obtain the results for 

three different model orders (codebook size), 

}1024,512,64{∈M and for SVM-GLDS we use two different 

polynomial expansion orders, 2=m and 3=m . 

6. Results 
1 blank line using 9-point font with single spacing

The speaker verification results for different modeling 

techniques (VQ-UBM and SVM-GLDS) and with and without 

TNorm are shown in Table 1. Figure 4 and Figure 5 show DET 

plots of VQ-UBM (M=512) and SVM-GLDS (m=3) systems 

and compares the performances with and without TNorm, 

respectively. 

Examining the Table 1, Figures 4 and 5, the following 

observations are made: VQ-UBM outperforms the SVM-GLDS 

methods in terms of both, EER and MinDCF. Best speaker 

recognition performance is obtained for M=512 for VQ-UBM 

and m=3 for SVM-GLDS. TNorm technique improves the 

speaker recognition performance for both methods, VQ-UBM 

and SVM-GLDS. TNorm has a big effect on MinDCF (Table I). 

It can be seen that from Figures 4 and 5 TNorm reduces the miss 
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probability errors for a fixed false alarm rate, significantly (left 

top corners of DET plots). 

Table 1. Speaker recognition performance 
1 blank line using 6-point font with single spacing

Method Without TNorm With TNorm

 EER (%) MinDCF EER (%) MinDCF

VQ-UBM (M=64) 9.27 4.28 8.91 3.49 

VQ-UBM (M=512) 7.98 3.86 7.69 3.13 

VQ-UBM (M=1024) 8.25 3.94 8.26 3.31 

SVM-GLDS (m=2) 12.97 6.35 12.45 5.22 

SVM-GLDS (m=3) 9.69 4.36 10.09 3.73 
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Fig. 4. Comparison of VQ-UBM and SVM-GLDS without 

TNorm.
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Fig. 5. Comparison of VQ-UBM and SVM-GLDS with TNorm.

.

7. Conclusions 
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In this paper we evaluated a well-known score normalization 

technique, TNorm, on VQ-UBM based speaker recognition 

system and compared the system performance with a state-of 

the-art modeling method, SVM-GLDS. Our results indicate that 

TNorm, independent of modeling method (VQ-UBM or SVM-

GLDS), model order (codebook size for VQ-UBM, and 

polynomial expansion order for SVM-GLDS), increase the 

speaker recognition performances in terms of EER and MinDCF 

values. In conclusion, TNorm is a simple and easy to implement 

method and needs to be considered in speaker recognition 

applications. 
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