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Abstract

This paper concemns the exact equivalence of second
order linear discrete controllers. The equivalence
principal automatically produces a systematic design
procedure for the Fuzzy Controllers. The equivalence of
the linear controllers can also be used to implement a
nonlinear control behaviour by piecewise linear
approximation. Another merit of the equivalence
principle is that it provides an opportunity to have a
fair comparison between linear and fuzzy controllers.

1. Introduction

Fuzzy logic introduced by Zadeh [1] has found wide
applications in the control of industrial systems.
However, the classical linear controllers (e.g., PI, PID)
are still the most widely used controllers in the
practical applications due to their simplicity of design
and implementations. This paper addresses the fact
that a Fuzzy Controller (FC) for a given input universe
of discourse can exactly represent linear discrete
controllers. It may be thought that there is no point in
implementing a linear control law by a FC; however,
this can be a preliminary step in designing FCs for
deterministic systems with known non-linearity where
the desired nonlinear global behaviour is represented
by piecewise linear approximation. In addition,
although there are many successful fuzzy speed and
position control applications, usually these controllers
are designed by trial and error methods [2,3]. The
derivation of the fuzzy equivalence of a linear
controller generates an automatic design procedure for
the FCs. Further, the equivalence principle provides a
fair comparison between fuzzy and linear controllers:
there are many research papers presenting such
performance comparisons between fuzzy and linear
controllers [3-6]. It is reasonable to assume that to
have a fair comparison, the controllers under
evaluation should give exactly or very similar closed
loop output responses for same nominal conditions
[4]. Hence, when the parameters of the plant are
changed or an external disturbance is applied, one can
easily see which method gives the more robust control
performance. Using the equivalence principle, the FC
under evaluation may be designed to satisfy this
comparison criteria.

2. Fuzzy Equivalence of a Second Order Linear
Discrete Controller

The fuzzy equivalence of a linear discrete PI
controller has been considered by Galichet and
Foulloy in [7]. In this paper, the fuzzy equivalence
of a second order linear discrete controller which has
a transfer function

_u2) _K.(z-a)z-b)

C@=2 (z-1)(z-0)

(1)

will be considered. Note that (1) can be easily
converted to a PI, PD or PID controller if the
parameters b and c are chosen properly. For
example, if ¢ is set to zero then (1) becomes a
representation of a PID controller, if b and c are set
to zero then it becomes a PI controller. If b is set to 1
and c is set to zero then (1) becomes a representation
of a PD controller. Note also that (1) is originally a
Pl+lead controller (if ¢ < b) and it can also be
converted to 2 lead or lag controller if the parameter
ais setto 1, and b and c are chosen according to the
desired lead or lag compensation

In the discrete time domain, the output of the
controller (1) can be written as

u(k) = u(k -1y + du(k) (3]
where

Su(k) = cou(k -1) + a,e(k) + a,de(k) + a,de(k - 1)

3
The constants o, a; and a3 are given as
a =K, (1-(a +b)+ab)
@, =K (a+b-ab) 4
a, = -abK,
and the & operator is defined as
(k) = x(k) ~ x(k -1) 4)

In the following subsections, the fuzzy equivalence
of the control law u(k) given by (2) will be
considered; however, the output of the FC will be
du(k) rather than u(k) because, in many practical
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applications, the actuating signal u(k) should be
limited (to protect the electronic circuits) with an anti-
windup mechanism which stops the integration in the
controller. The anti-windup mechanism can be easily
implemented in (2) if du(k) is chosen as the output of
the FC (addition ,or integration, is stopped when u(k)
reaches the saturation limit, i.e., du(k) is not added to
the previous value u(k-1) during the saturation). Note
that u(k) is the numerical integration of du(k) as seen
in (2) which can be easily implemented outside the
controller to obtain the actuating signal u(k).

2.1 Sugeno Type Fuzzy Equivalence

In this section, the main purpose is to design a Sugeno
type FC that is precisely equivalent to the controller
given by (1). A Sugeno type FC has a rule-base
consisting of the rules in the form of [8]

IF X1 is Al AND X2 is Az AND
THEN yi= g(xhx21 e -,xn)-

AND x, is A,

Since the output y is a function of the input variables,
any control law can be directly implemented by
choosing the output y as the desired control law if the
membership functions of the input variables are
chosen so that they provide a linear mapping between
the inputs and the output of the controller.

As mentioned in Section 2, the output of the FC will
be du(k) and u(k) will be obtained by using (2). Thus
from (3), the inputs to the FC become du(k-1), e(k),
de(k) and de(k-1). In order to keep the FC as simple as
possible and to have a linear mapping, the
membership functions for the input variables are
chosen as shown in Fig.1, where v; ,for i = 1 to 4,
represents the input variables du(k-1), e(k), de(k) and
de(k-1) respectively. It should be noted that the input
variables are assumed to be bounded and M; is the
maximum value that the magnitude of the
corresponding input variable can take on. In other
words, M; determines the limits of the universe of
discourse for the corresponding input variable.

The Sugeno type FC will have 2* = 16 rules since
there are 4 input variables and 2 membership
functions for each input variable. The rules can be
represented in a general form as

IF du(k-1) is Aj, AND e(k) is Ay, AND de(k) is Ay
AND 8e(k-1) is Ayq THEN dugy(k) = cdu(k-1) +
ase(k) + ozde(k) + aszde(k-1)

where the indices {m,n,p,q} = {1,2} and «;, ar; and a3
are given by (4).
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Figure 1 Membership functions for the input
variables (i = 1,..,4)

Example 1 : Consider the system shown in Fig.2 :

Yruil2) __, Y8
Contraller zoh
¥(z) )
T,=2.5ms

Figure 2 The control system block diagram

The transfer functions of the plant, zero-order-hold
(zoh) and the controller are given as

100
G ()= 9 +10) )
1 ol E-T.r
G,(s)= O
6. () - 2z=09876)z~095) o

(z-1)(z-0.88)

Now the aim is to design a Sugeno type FC that will
be precisely equivalent to G¢(z) and thus give
exactly the same closed loop responses as the system
shown in Fig.2.

The input variables are du(k-1), e(k), de(k) and de(k-
1). Their membership functions are chosen as shown
in Fig.1, where M; is selected as 250 fori = 1to 4
(i.e. for all the input variables). Note that the value
of M; can be chosen arbitrarily high because, as long
as the magnitude of the input values do not exceed
the corresponding M;, the equivalence between G(z)
and the FC will be valid. However, in most of the
practical applications, the reference input and the
control signal u(k) are usually limited. Hence, all the
input variables of the controller are bounded due to
these limitations.

The number of rules are 2* = 16 (there are 4 input
variables and 2 membership functions for each input
variable) and the rules can be represented in a
general form as




"ELECO"99 INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING"

IF u(k-1) is A, AND e(k) is Az AND Se(K) is Asp
AND de(k-1) is Ay, THEN Sugy(k) = 0.885u(k-1) +
0.00124¢(k) + 1.998763e(k) + 1.87644de(k-1)

where the indices {m,n,p,q} = {1,2}.

Fig.3 shows the simulation results for both G(z) and
the Sugeno type FC. The output response (y) and the
control signal (u) are exactly same for both controllers
as expected. The reference input (y.¢) is a unit step
function applied att = 0.1 s.

Outputs (y) Control signals {u)

1t y 2

08 18

Thick dashed : FC
0.6 Thin continuous : G.(z) {12
04} o8
u

02 0.4

% 05 1 1 g

Time
(s)
Figure 3 Simulation results showing the equivalence
between G (z) and the Sugeno type FC

It should be noted that the use of Sugeno type FC
becomes more reasonable and meaningful when
several control laws are to be implemented in a single
controller rather than implementing only one control

law. However, in this paper, the main purpose was
to illustrate the equivalence between a linear
controller and a Sugeno type FC as a preliminary
step for the implementation of several control laws
in a FC.

2.2 Mamdani Type Fuzzy Equivalence

Mamdani type FCs do not have algebraic equations
in the THEN part of the rules [8]; rather they have
output membership functions and there is a
defuzzification process to produce a control output
value. Therefore, the control law of the linear
controller can not be directly used in the Mamdani
type FCs. Since a linear control law is to be
implemented, the inference operators (AND,
implication and aggregation) and the defuzzification
method should be chosen properly in order tv not to
lead to a non-linearity in the FC. It is possib.e to find
different ways for implementing a linear control law
in a FC, but one of the simplest way is to chose the
algebraic product for the AND and implication
operations and to use the center-average-
defuzzification method [8]. In the center-average-
defuzzification method, the aggregation method is
not required and the centers of the output
membership functions are the quantity of interest,
not the shapes of the membership functions.
Therefore, the output membership functions can be
simply chosen as singletons centred at the
appropriate points as shown in Fig.4. It should be
noted that the output membership functions do not
have to be regularly distributed.

W
duy e e e dug ] f A T
4 | ! ' 4 | 1 l ’ ’ | | ] ~ p 5uMAM
Figure 4 Output membership functions
Table I The rule-base of the Mamdani type FC
dupam dul=A; , e=Ay Sumam dul=A,; , e=An
del \ e Aj As, del \ de Ay Ay
Ay du, du, Aq du; dug
Ay du, du, Agn du, dug
Oupam dul=A;, , e=Ay Sumam Sul=A;; ., e=Ay
del\ de Agy Az del \ de A31 Agz
Ay duy duy, Ay duyy du,,
Agp duy; du,, Ay duys duy
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The input membership functions should also not
introduce any non-linearity. For example, if the input
membership functions are chosen as shown in Fig.1,
they not only provide a linear mapping but also result
in the smallest possible rule-base (i.e. the number of
the rules becomes minimum since there are only two
membership functions for each input variable).

Using the input and output fuzzy sets shown in Fig.1
and Fig.4, the rule-base of the Mamdani type FC can
be given in a tabular form as shown in Table 1. The
rule-base consists of 16 rules since there are 4 inputs
and 2 membership functions for each input variable.

In Table I, the symbols ¢, de, dul and d¢el represent
the input variables e(k), de(k), du(k-1) and de(k-1)
respectively. The output is represented by duyam and
the symbols A;;, Ap (i = 1,..,4) and du;, du,,.......du
refer to the input and output membership functions
shown in Fig.1 and Fig.4 respectively.

Thus, the equivalence problem has been reduced to the
determination of the values of My,...My and My,
My, ----Mgyys for the membership functions of the
input and output variables respectively. The selection
of M,,..,M, has been discussed for the Sugeno type FC
in Section 2.1 and this discussion is also valid for the
Mamdani type FC since there is no difference between
Mamdani and Sugeno type FCs in terms of the input
fuzzification process. On the other hand, the output
membership function parameters Mayi, Maua, -+ --Mau1s
can be determined by using the desired linear control
law, the rule-base and the extreme values of the input
variables since the FC is expected to implement the
desired linear control law between the extremes of the
input variables using the rules in the rule-base. For
example, from Table I, consider the rule

IF dul is A;; AND e is Ay, AND de is A3; AND del
is A42 THEN auMAM is dl.l7

which implies that if the certainty of the rule is 1 (that
means all the input values are full members of the
corresponding fuzzy set, i.e. membership degree = 1,
and thus the input values are the extremes), then the
output fuzzy set du; should have a center at
My = —cM, + oM, - M, + M, )

to satisfy the equivalence between the controllers at
these extreme values of the input variables. In this

manner, the parameters Mgy,.....Mans can be
calculated as shown in Table II.

Thus, if the centers of the output membership
functions are chosen as shown in Table II, the FC will
provide the desired linear control behaviour by
implementing a linear interpolation between the
output values corresponding to the extremes of the
input variables.

37.

Table I The centres of the output membership

functions
_-L_iﬂ\ =-cM, - M, - a;M; - 03My | Mgy = -Myis
My = <M, - oM, + a,M; - asM, | Myw= -Myyr
MM = -CM1 = a|M2 2 GzMa + (13M4 Mdull = 'Mdllé
My = -cM; - aM; + a,M; + asM, | Mauiz = -Maus
Myys = <M + M, - a;M; - My | M3 = -Miwg
M = -cM; + M, + 0sM; - My | Myyie = -Myaa
'_M.i‘!" =-cM, + u‘Mz - QM + aaM, Myus = 'Mdn2
| Myus = -cM; + auM; + oM + asMy | Mans = -Mgu

Example 2 : Let us again consider the system shown
in Fig.2 with the plant and the linear controller given
by (6) and (8) respectively. The aim is to design a
Mamdani type controller that is precisely equivalent
to the linear controller given by (8).

The input membership functions are chosen as
shown in Example 1 since there is no difference
between Mamdani and Sugeno type controllers in
terms of the fuzzification process. Therefore, the
membership functions are as shown in Fig.1, where
M; = 250 (for i = 1 to 4) for all the input variables
(the selection of M; has been already discussed in
Example 1). The output membership functions are
chosen as shown in Fig.4 and thus the rule base is as
shown in Table I.

By comparing (1) and (8), the linear controller
parameters become

K.=2, a=0.9876, b=0.95 and c=0.88.

Using (4), the constants a;, 0 and «; are calculated
as

a; = 0.00124, a, =1.99876 and o3 =-1.87644.

The centers of the output membership functions are
obtained by using Table II as shown in Table III.

Table IIl The centres of the output membership

functions

M =-250.89 Mo = 189.11

Mm =748.49 Md"m = 118849

My = -1189.11 Mg = -749.11

My = -189.73 Mgz = 250.27

MdnS = -50.27 Mdmg = 189.73
M. = 749.11 M4 = 1189.11

M,,7 = -1188.49 Mgs = -748.49
| Magg = -189.11 Mauis = 250.89

Fig.5 shows the simulation results for the designed
Mamdani type FC in comparison with the linear
controller (8). The output response (y) and the
control signal (u) are exactly same for both
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controllers as expected. The reference input (y,) is a
unit step function applied at t = 0.1s.

Outputs (y) Control signals (u)

1 Y 2

08 1.8

Thick dashed : FC
08 Thin continuous : G.(z) {12
0.4 08
u

02 0.4
[ [
0 05 1 15

Time
(s)
Figure § Simulation results showing the equivalence
between G.(z) and the Mamdani type FC

Conclusions

In this paper, the fuzzy equivalence of the second
order linear controllers has been investigated. It has
been shown that any second order linear control law
can be precisely implemented in a FC for a given
input universe of discourse. The equivalence may be
interpreted as a sort of bridge between the classical
and fuzzy control approaches. This is an important
point because the equivalence may be used to combine
the classical and the fuzzy control approaches in a
same framework and thus a controller using the
advantages of both control methods may be designed.
The fuzzy equivalence of a general controller (n-poles
and m-zeros) can also be derived in the similar
manner.
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