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Abstract
Petri net is a powerful graphical and mathematical tool
for analysis and design of discrete event systems. This pa-
per focuses on the reachability path problems in Petri nets.
Thereby, two algorithms are developed to create the set of
minimal paths and the shortest path to lead the system from
the given initial state to a desired state. Both of them are
enlightened by dynamic programming approach; that is to
say, they are backward techniques. Proposed algorithms do
not deal with the reachability tree or graph of the net un-
der analysis and use memory only for storing the obtained
paths unlike the approaches based on the reachability tree.
Moreover, the algorithms can be applied to general Petri
nets without any restriction.

1. Introduction
Petri nets are frequently used for modeling and analysis of Dis-
crete Event Systems (DES)s such as communication protocols,
manufacturing systems, transport systems and others [1,2,3,4].

In most cases, it is interested in driving a system from a
given initial state to a desired state, and obtaining the required
operation sequence. In terms of Petri nets this type of problems
are called as reachability path problems, such as minimal path
problem and shortest path problem. Obtaining the paths that do
not go through the same state multiple times is called as mini-
mal path problem. For minimizing the cost, it is aimed to reach
the desired state by minimum number of operations. For Petri
nets, this problem is called as shortest path problem which aims
to compute the shortest transition sequence, i.e., transition se-
quence with the minimum number of transitions, firing which
from the initial state drives the system to the desired state.

Reachability analysis techniques and reachability path
problems are strictly connected, since the reachability analysis
techniques may also be utilized to solve reachability path prob-
lems. Two main reachability analysis techniques of Petri nets
are reachability tree approach which is obtained by enumerating
all reachable markings and the matrix equation approach. But,
constructing the reachability tree and investigating the paths to a
desired state would be rather difficult task. The main drawback
in the use of matrix equation approach is that the solution of the
fundamental equation does not give any information about the
order of firings.

Many works have been presented to contribute the reacha-
bility analysis and the reachability path problems. The author
in [7] deals shortest path problem directly and the length of the
shortest path is obtained for some subclasses of Petri nets in that
work. But the transition sequence of the corresponding path is
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not referred. In [5], Petri nets without transition invariants are
studied, while only strictly monotone Petri nets are considered
in [6]. In [3], reachability condition of some subclasses of Petri
nets is exhibited. Although, these works upgrade the reacha-
biliy analysis techniques for some subclasses, their complexity
and expansions are still open.

In this paper, two algorithms are developed to solve mini-
mal paths and shortest path problems. Both of them are enlight-
ened by dynamic programming approach, thus they are back-
ward techniques. Given an initial state and a desired state, the
first algorithm obtains the shortest path while the second one
results in all minimal paths driving the system from the initial
state to the desired state.

The main contributions of this paper are as follow: The pro-
posed algorithms do not deal with the reachability tree or reach-
ability graph of the net under analysis and use memory only for
storing the obtained path as distinct from the approaches based
on reachability tree. Moreover, developed algorithms can be
applied to general Petri nets without any restriction.

2. Petri nets
This section provides background on Petri nets related to the
discussion of this work and presents an introductory example.
The readers are recommended to see [2,3] for more detailed in-
formation.

Petri net is a tuple N = ⟨P,T,N,O⟩, where P is the set of
places, T is the set of transitions, N : P×T → N is the input
matrix that specifies the weights of arcs directed from places to
transitions, O : P× T → N is the output matrix that specifies
the weights of arcs directed from transitions to places. Here, N
is the set of non-negative integer numbers.

M : P → N is a marking vector (or marking), M(p) in-
dicates the number of tokens assigned by marking M to place
p ∈ P, and the initial marking of the system is denoted by m0.
A transition t ∈ T is enabled if and only if

M(p)≥ N(p, t) ∀p ∈ P. (1)

which is called as enability condition. The set of transitions
which are enabled at a marking M is denoted by E(G,M).

A transition sequence g is defined as firing sequence of en-
abled transitions t1t2 . . . tk, where t1, t2, . . . , tk ∈ T . A marking
M′ is said to be reachable from M if there exists a transition se-
quence g= ti1 , ti2 , ... 1≤ ik ≤ |T |, k = 1,2, ... which can be fired
starting from M (i.e., the first transition of the sequence fires at
M) and yielding M′ (i.e., the final transition of the sequence
yields M′) according to the following so-called state equation:

M′ = M+Cσg (2)

724



where, C := O−N denotes the incidence matrix, σg : T → Z

denotes the firing count vector whose jth element indicates how
many times t j is fired in the transition sequence g. M

g→ M′

denotes that the marking M′ is reachable from a marking M by
firing the transition sequence sequence g. The set denoted by
R(G,M) is the set of all markings reachable from M. The set
of all reachable markings from m0 is called reachability set of
Petri net and denoted by R(G,m0).

If ∃y ≥ 0 such that y ·C = 0 then, y is called as P-semiflow
of the net and every marking M reachable from m0 satisfies:

y ·M = y ·m0 (3)

This provides a token balance law which is the necessary reach-
ability condition.

For a given Petri net system, as many new markings as the
number of the enabled transitions can be obtained from the ini-
tial marking. From each new marking, more new markings
can be reached until repeated nodes are encountered (old) or
no transitions are enabled (dead-end). This process yields tree
representation of the evaluation of the system which is called as
reachability tree. In the reachability tree each node represents a
marking and the firing of a transition transforming one marking
to another is represented by arcs.

A reachability graph of a PN is a directed graph G =
(R(G,m0),E), where e ∈ E represents a directed arc from a
class of markings to the other class of markings. The reacha-
bility graph demonstrates a better performance than the reacha-
bility tree [8].

Example 1: Let us consider the PN in Fig. 1 with P =
{p1, p2, p3, p4, p5, p6, p7}, T = {t1, t2, t3, t4, t5, t6}
and m0 = [1 0 0 1 1 0 0]T . P-semiflows of this net are P1 =
[1 1 1 0 0 0 0], P2 = [0 0 1 1 0 0 1] and P3 = [0 0 0 0 1 1 1].

Figure 1. An example Petri net.

The reachability graph for this PN system is given in
Fig.2. where reachable markings are denoted by m0 = M1 =
[1 0 0 1 1 0 0]T , M2 = [0 1 0 1 1 0 0]T , M3 = [1 0 0 1 0 1 0]T ,
M4 = [0 0 1 0 1 0 0]T , M5 = [0 1 0 1 0 1 0]T , M6 =
[1 0 0 0 0 0 1]T , M7 = [0 0 1 0 0 1 0]T , M8 = [0 1 0 0 0 0 1]T .
It is possible to obtain all reachable markings and to get corre-
sponding transition sequences to reach these markings from the
reachability tree by enumeration. That is, firing the transition
sequence “g = t4t5”from m0 drives the system to the state M6.
Unfortunatelly, for Petri nets with great number of reachable
states, using reachability graph to find the paths driving the sys-
tem from the initial marking to desired marking is an exhausting
way.

Figure 2. Reachability graph.

3. Reachability Path Problems:Shortest
Path&Minimal Paths

In this work, the main goal is to develop efficient techniques
to solve reachability path problems of general Petri nets. Firstly,
we give more formal definitions for the reachability path prob-
lems considered in this work.

Definition 3.1 (Shortest Path). Let (N ,m0) be a Petri net sys-
tem and Md ∈ R(G,m0) a marking. The transition-marking se-
quence leading m0 to Md while including minimum number of
transition firing is called as shortest path.

Definition 3.2 (Minimal Path). Let (N ,m0) be a Petri net and
Md ∈ R(G,m0) a marking. The transition-marking sequence
leading m0 to Md without passing through the same marking
multiple times is called as minimal path.

In order to solve reachability path problems above, an ex-
hausting approach may be composing reachability tree. But this
is time consuming method especially for big sized Petri nets.
The proposed backward method is introduced in the following
part.

3.1. Backward Method

According to the proposed backward method, for a Petri
net system (N ,m0) the transition sequence driving the system
from m0 to M′ ∈ R(G,M) will be attained by obtaining the fired
transitions one by one starting from Md and going back to m0.

If a transition t j ∈ T is fired at a marking M yielding M′,
element-wise representation of the state equation can be written
as

M′(pi) = M(pi)+O(pi, t j)−N(pi, t j), ∀pi ∈ P (4)

yielding

M′(pi)−O(pi, t j) = M(pi)−N(pi, t j), ∀pi ∈ P (5)

Necessary condition for transition t j to be enabled at a
marking M yielding M′ can be reformulated in terms of M′ by
combining equation (5) and enabling condition in (1) together:

M′(pi)−O(pi, t j)≥ 0, ∀pi ∈ •t j (6)

where •t j denotes the set of all places from which there exists a
directed arc to t j, i.e., •t j = {p|N(p, t j)≥ 1, t j ∈ T}

From a marking M ∈ R(G,m0), firing any transition t j ∈ T
which satisfies the condition in (1) may yield M′. Correspond-
ing M is obtained by solving the following equation system:
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M = M′−O(:, t j)+N(:, t j) (a)

BT M = BT M′ (b)
(7)

where equation (7)(a) is the state equation and equation (7)(b)
corresponds to reachability of M from m0, i.e. M ∈ R(G,m0)
[3].

Algorithm 1 goes through with the proposed backward
method to achieve the shortest path from the initial marking m0
to the desired marking Md . It starts from Md , and constructs the
Path by going backward until m0 is reached. Path is composed
of the ordered set of couples (called node) of state M on the path
from m0 to Md and the transition t ∈ T fired from M. Hence,
the node of M for the operation M t→ M′ is (M, t). Note that, jth

( j ∈ {1,2}) component of ith node of Path is denoted by Pathi j
and the number of states in a set ∗ is denoted by | ∗ |. In Algo-
rithm 1, the 1st component of the last node of Path (Path|Path|1 )
is taken as the present marking M′. Then for each transition,
firing which from a preceding marking may yield M′ (thus, for
each transition satisfying condition in (6)), corresponding pre-
ceding marking, M, is calculated. Hereby, all potential preced-
ing markings of the present marking M′ are obtained.

The set which is called as Candidates is constructed by the
nodes of M′’s potential preceding markings, which are reach-
able from m0 and not added to the sets Path or Forbidden pre-
viously. If Candidates is nonempty, index function (which re-
turns the index of the node whose distance to m0 is minimum
through the set Candidates) is called to place most promising
one into Path. Otherwise, the algorithm removes the node of
the present marking M′ from Path and adds M′ to the set named
Forbidden. Then it repeats the previous step again to choose
another present marking M′. This procedure proceeds until the
node of m0 is put in Path.

Algorithm 1 Shortest Path

Input: (N , m0), Md
Path = {(Md ,0)}
M′ = Md
do-while Path|Path|1 ̸= m0
Candidates = /0
for j = 1 : |T |
if M′(pi)−O(pi, t j)≥ 0, ∀pi ∈ •t j

M = M′−O(:, t j)+N(:, t j)

if BT M′ = BT M & M′ /∈ Path & M′ /∈ Forbidden
Candidates =Candidates∪ (M, t j)

end-if
end-if

end-for
if Candidates ̸= /0
i=Index(Candidates)
Path = Path∪Candidatesi
M′ = Path|Path|1

else
Forbidden = Forbidden∪M′

Path = Path\Path|Path|
M′ = Path|Path|1

end-while
Output:Path

Backward approach can also be used to find all minimal
paths from m0 to Md . Algorithm 2 carries out the correspond-
ing procedure. In the algorithm, Pathset is composed of the set

Index function
Input: Candidates={(M1, t1), ...,(M|Path|, t |Path|)}
index=1
for i = 1 : |Candidates|

if
∣∣Mi −m0

∣∣< ∣∣Mindex −m0
∣∣

index=i
end-if

end-for
Output:index

of uncompleted paths starting from Md and being constructed
by going backward to m0. As in Algorithm 1, each path is rep-
resented by the ordered set of couples of state M ∈ R(G,m0)
and the fired transition t ∈ T from M. Recall that, the node of
M for this operation (i.e. M t→ M′) is (M, t)

Pathseti jk is the kth (k ∈ {1,2}) component of the jth node
of the ith path in Pathset. In Algorithm 2, an arbitrarily cho-
sen path is removed from Pathset and assigned to a temporary
path T Path. For the 1st component of the last node of T Path,
i.e. M′ = T Path|T Path|1, all enabled transitions to reach M′ are
obtained. Then for each of these transitions the preceding mark-
ing, M, from which the transition is fired and M′ is reached, is
calculated. In the case that M is reachable from m0 and it is
not previously added to T path, then the node of M is added to
T Path. If T Path is completed, i.e. M = m0, T Path is added to
the set of completed paths, FPathSet, otherwise it is added to
the set of uncompleted paths, PathSet.

This process is continued until all candidate paths is com-
pleted by obtaining all nodes on the considered path from m0 to
Md , that is Pathset is emptied.

Algorithm 2 Minimal Paths

Input: (N , m0), Md
PathSet = {{(Md ,0)}}
FPathSet = /0
do-while PathSet ̸= /0

choose i ∈ {1,2, ..., |PathSet|}
T Path = PathSeti
PathSet = PathSet\PathSeti
M = T Path|T Path|1
for j = 1 : |T |
if M(pi)−O(pi, t j)≥ 0, ∀pi ∈ •t j
M′ = M−O(:, t j)+N(:, t j)

if BT M′ = BT M & M′ /∈ T Path
if M′ = m0
FPathSet = FPathSet ∪{T Path∪ (M′, t j)}

end-if
PathSet = PathSet ∪{T Path∪ (M′, t j)}

end-if
end-if

end-for
end-while
Output:FPathSet

Example 2: Let us consider the PN system considered in Ex-
ample 1 again with desired target marking Md = M5. In or-
der to obtain the shortest path from m0 to Md Algorithm 1
is executed, which processes as follow: At Md the transitions
satisfying the condition in (6) are t2 and t4. For transition
t4, the preceding marking is obtained as M2 (i.e. M2

t4→ Md);
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for transition t2, the preceding marking is obtained as M3 (i.e.
M3

t2→ Md). Since both M2 and M3 are reachable from m0
(they satisfy the condition in (7)b) and they have not already
been added to the Path, Candidates = {(M2, t4),(M3, t2)}. In-
dex function is called to choose the closest one to m0 through
the set Candidates. Since their distance from m0 are same, ei-
ther of them is added to Path, i.e. Path={(Md ,0),(M2, t4)}.
Then the procedure is repeated for the marking of the last node
of Path, i.e. M2. The previously firable transitions and cor-
responding preceding markings forms new candidate nodes.
Hence, this once Candidates={(M1, t4),(M8, t6)}. The min-
imum distance node through the candidate nodes is (M1, t4)
and added to Path. Since m0 = M1 the Path is completed as
Path={(Md ,0),(M2, t4),(m0, t1)} and the algorithm terminates.
That is, the shortest path driving the system from m0 to Md is
obtained as m0

t1→ M2
t4→ Md

For the same system when Algorithm 2 is executed, the set
of minimal paths, that is Pathset is obtained as follow:

Pathset =
{

{(Md ,0),(M2, t4),(M1, t1)},

{(Md ,0),(M2, t4),(M8, t6),(M6, t1),
(M3, t5),(M1, t4)},

{(Md ,0),(M2, t4),(M8, t6),(M6, t1),
(M3, t5),(M7, t3),(M4, t4),(M2, t2),
(m0, t1)},

{(Md ,0),(M3, t2),(M1, t4)},

{(Md ,0),(M3, t2),(M7, t3),(M4, t4),
(M2, t2),(m0, t1)},

{(Md ,0),(M3, t2),(M7, t3),(M4, t4),
(M2, t2),(M8, t6),(M6, t1),(M3, t5),
(M1, t4)}

}

(8)

Example 3: Let us consider the Petri net system in Fig.3 taken
from [3], which models a multiprocessor system. In the PN
model, place p1 contains tokens which represent the active pro-
cessors whereas tokens inside p2 represent the available buses;
transition t1 represent the sending of a request of access and
place p3 contains the requests which have not been still served.
Tokens inside p4 represent processors which are accessing to a
memory whereas tokens inside p5 represent processors which
are waiting for the memory occupied by tokens inside p4. The
firing of transition t5 models the end of the access to the memory
which is requested by tokens inside p5; the firing of t4, instead,
represents the end of the access to a memory there are no more
requests. Transitions t2 and t3 model the two possible choiches
of memory: firing t3 means to choose the memory which is at
the moment utilized by processor in p4 whereas firing t2 means
the choice of any other memory.

Suppose that at the initial state there are two active pro-
cessors and two available buses (i.e. m0 = [2 2 0 0 0]T ). It is
desired to reach the state where there are one active processor,
one bus while one processor is accessing to the memory, i.e.
Md = [1 1 0 1 0]T . By using Algorithm 1, the shortest Path to
reach Md = [1 1 0 1 0]T from m0 = [2 2 0 0 0]T is obtained as
m0

t1→ [1 2 1 0 0]T t2→ [1 1 0 1 0].
All possible paths from m0 = [2 2 0 0 0]T to Md =

[0 1 1 1 0 ]T can be obtained by Algorithm 2 which yields 4
minimal paths. One of these paths is:

Figure 3. An example Petri net [3].

[2 2 0 0 0]T t1→ [1 2 1 0 0]T t1→ [0 2 2 0 0] t2→ [0 1 1 1 0] t3→
[0 1 0 1 1] t5→ [1 1 0 1 0].

Note that both of the proposed algorithms can be used to
obtain paths leading the systems back to m0 from m0, if it is
possible. For example, in order to find the shortest path from
m0 to m0, Algorithm 1 is executed with Md = m0, and it turns
out the shortest path as m0

t1→ [1 2 1 0 0]T t2→ [1 1 0 1 0] t4→ m0 =
[2 2 0 0 0]T .

4. Conclusion
In this work, two algorithms are developed to contribute

reachability problems of Petri nets. Both of them deal with
the paths from m0 to m f while Minimal Paths Algorithm ob-
tains all the paths which do not pass through the same marking
and Shortest Path Algorithm obtains the shortest path which in-
cludes minimum number of transition to reach m f . The pro-
posed algorithms are backwars techniques and do not deal with
the reachability tree or graph of the net under analysis and use
memory only for storing the obtained path as distinct from the
approaches based on reachability tree. Moreover, the algo-
rithms can be applied to general Petri nets without any restric-
tion.

Future research directions include using integer and mixed-
integer programming techniques for reachability path problems
and comparing complexity and computational time with the
present methods.
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