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ABSTRACT

An image sequence stabilization system based on
adaptive Kalman filtered smoothing of global camera
motion is presented in this paper. The global camera
displacement is modelled in the form of a constant
velocity motion model, that is applied to the Kalman
filter to ensure smooth global displacements. The
process noise variance of the Kalman filter is varied
adaptively according to former correction vectors, to
prevent the correction vector from exceeding the
permitted frame shift limit, while achieving successful
stabilization.

I. INTRODUCTION

Image sequence stabilization (ISS) systems are used to
remove undesired image fluctuations (jitter) from a
sequence so as to enhance visual quality [E}lG]. Instability
of the camera operator or the camera platform may result
in the image sequence being subject to involuntary global
motion effects, and by removing such undesired global
motion components a compensated image sequence
displaying only requisite global motions can be obtained.
The application field ranges from state-of-the-art
camcorders to forthcoming third generation (3G) wireless
video communication systems.

Image stabilization systems consist of two parts: the
motion estimation part and the motion correction part.
The motion estimation part resolves global motions
contained in an image sequence, and the motion
correction part compensates for the jitter components.
Primitive image stabilization systems used to acquire the
vibration statistics via mechanical sensors [1,2], and
perform stabilization by changing the refraction angle of
the optical lens [3]. Current image stabilization systems
are now fully digital, motion estimation and correction is
performed by digital signal processing [4-16], enabling
robust, inexpensive and comparably lighter systems.
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Image sequence stabilization systems can compensate for
translational, rotational or scale inconsistencies. Visual
quality is most severely degraded by translational jitter,
and therefore most stabilization systems have focused on
translational jitter only [4-11], commonly referred to as
two dimensional (2-D) stabilization systems. Stabilization
systems that compensate for rotation and/or scale
variations with preserved or compensated translational
jitter are referred to as three dimensional (3-D)
stabilization systems [12-14].

Accurate and fast estimation of global interframe motion,
has been the common subject of research for image
sequence stabilization systems. Estimation of global
motion by block-matching of subimages has been
proposed in [4], and the technique has been extended to
bit-plane matching in [5] and gray-coded bit-plane
matching in [6]. Global motion estimation based on edge
pattern matching has been demonstrated in [7].
Multiresolution approaches for global motion estimation
making use of affine motion parameters between levels of
the Laplacian pyramid, mosaic-based registration, and
feature-based matching have been presented in [8], [9]
and [10] respectively. A robust utilisation of phase
correlation based motion estimation has been presented in
[11]. Tracking of visual cues with 3-D motion parameters
estimated by Kalman filtering for the compensation of
image rotations has been demonstrated in [12]. An image
flow algorithm has been used to estimate global motion in
[13]. The estimation of 3-D motion parameters from two
dimensional affine motion has been presented in [14].

The motion correction part of stabilization systems has
received less attention. Several stabilization systems have
been implemented to remove all of the estimated global
motion [8-10], without resolving the jitter component
from intentional global camera motion. Three dimensional
stabilization systems are mainly aimed at removing [12-
14] or smoothing [15] the rotational motion component.
Motion vector integration (MVI) [4,5,6,16] and frame
position smoothing (FPS) [11] have been presented to



stabilize translational jitter, with the aim to preserve
deliberate camera movements. While MVI s
implemented to operate in real-time, it has the drawback
of requiring a compromise between stabilization
performance and intentional movement preservation.
Frame position smoothing based on DFT filtering as
proposed in [11], on the other hand accomplishes an
optimal balance between stabilization performance and
deliberate global camera preservation capabilities,
however is only suited for off-line applications due to the
Fourier domain implementation. Kalman filtered frame
position smoothing is proposed to provide the superior
stabilization performance of FPS at real-time.

This paper presents an image sequence stabilization
system based on adaptive Kalman filtering of absolute
frame positions [17]. The camera global motion is
modelled using a constant velocity motion model, and
Kalman filtering is employed to ensure smooth changes in
frame positions. The process noise variance of the
Kalman filtering process is adaptively changed according
to the magnitude of previous correction vectors (similar to
adaptively changing the damping coefficient of MVI). A
low process noise variance is employed by default to
ensure intensive smoothing, while the process noise
variance is momentarily increased if the correction vector
is found to approach the limit of permitted frame shifts.

Il. KALMAN FILTERING
The Kalman filter is implemented to provide an estimate
to the state of a discrete-time process that is defined in the
recursive form of a linear dynamic system [18].

x(t+1) = F*x(t) +w(t) 1)

The state of the system is linearly related to the previous
state through the matrix F, and w(t) is used to denote the
process noise. The Kalman filter operates using
observations of all or some of the state variables, defined
by the observation system:

y(t) = H *x(t) +v(t) )

The observation variables are linearly related to the state
variables through the matrix H, while v(t) is used to
denote the measurement noise. By definition of the
Kalman filter, process and measurement noise are
assumed to be independent of each other, white, having

normal probability distributions W ~ N(O,Q) and
v~N(,R).

The Kalman filter predicts the process state using a form
of feedback control: first the process state is obtained
from previous state variables through the linear dynamic
system defined by (1), then a feedback is attained from
the measurement input. Thus the Kalman filtering process

is divided into two parts: the prediction stage (time update
equations) and the correction stage (measurement update
equations). The time update equations project the current
state and error covariance estimates forward (in time) to
obtain the a priori state estimates. The measurement
update equations are responsible for the feedback, by
incorporating a new measurement into the a priori
estimates to obtain the improved (tuned) a posteriori
estimates.

linear

The prediction is accomplished through the

dynamic system by X, =F *X_, where X_,; isthe a
priori state estimate for the next state (image frame n+1)
and X, is the a posteriori state estimate of the current

state (frame n). At the prediction stage, the a priori
estimate error covariance, that is defined as

P = E[(xn - %, Nx, - %, )TJ for frame n+1 is obtained
recursively from P, = FP.F" +Q, where P, is the

n n
a posteriori estimate error covariance for frame n.

The correction is accomplished by computing the gain
- _ -1

matrix K, =P H' (HPn HT + R) that is used to

compute the a posteriori state from the a priori estimates

by X, =X, + Kn(yn - ng) The a posteriori

estimate error covariance is computed similarly from

P=(1-K,H)P .

After each time and measurement update pair, the process
is repeated with the previous a posteriori estimates used to
predict the new a priori estimates. Thus, the Kalman filter
recursively conditions the current estimate on all of the
past measurements. This recursive nature of the Kalman
filter enables practical real-time implementation.

To employ the Kalman filter, the state and observation
equations are constructed as in (1) and (2), to define the
dynamic process and relate the corresponding measured
inputs. The respective noise variances have to be set
according to process and measurement noise
characteristics to enable optimal operation. Then the
model can simply be plugging into a generic form of the
Kalman filter [18], that carries out the resulting algebra
(prediction and correction stages), to obtain the state
estimates for each instance.

Kalman filtering has been employed in various fields of
image processing, such as video restoration [19]. In cases
where the process to be estimated, or the measurement
relationship is non-linear, a Kalman filter that linearizes
about the current mean and covariance, referred to as the
extended Kalman filter can be employed. For example,
the use of an extended Kalman filter for real-time



estimation of long-term 3-D motion parameters for model
based coding has been presented in [20], and the use of an
extended Kalman filter for object tracking has been
presented in [21].

For the Kalman filter based image stabilization system, a
linear global camera motion model is used, and the
observations are also linearly related to the process state.
Therefore, the standard Kalman filter can be employed
satisfactorily for the smoothing of global motion, with no
need for the more complex extended Kalman filter.

I11. CONSTANT VELOCITY CAMERA MODEL

In order to ensure a smooth frame transition, the global
camera motion is modelled as a constant velocity motion
process. According to defined process noise
characteristics, the Kalman filter will actually allow
variations in the camera velocity to agree with measured
global frame displacements, instead of enforcing constant
velocity frame displacements. The important feature is
that the velocity variations are driven to be smooth.

Any real-time motion estimation technique, for instance
gray-coded bit-plane matching as demonstrated in [6], can
be employed to obtain interframe global motion vectors.
The absolute position of an image frame is defined as the
absolute displacement with respect to the first frame of
that particular scene shot. The absolute frame position of
any frame can be obtained from the accumulation of all
former interframe differential global motion vectors. It is
also possible to track absolute frame position recursively,
by adding the interframe motion vector of a particular
frame to the absolute position of the previous frame.

In order to construct the state and measurement equations
for the camera motion system, the absolute frame position
can be assigned to correspond to the instantaneous
absolute camera position. For the state equations of the
constant velocity camera motion model (CVCMM), the
position of a frame is defined as the position of the
previous frame plus the constant camera velocity, in each
direction. Denoting x, and x, as the absolute horizontal
and vertical positions in the image plane respectively, and
vy and v, as the horizontal and vertical camera velocities,
the CVCMM model state system is expressed as

§X(n)g o1 o 1 omx,(n- )
,) 0 10 ,(n- 1)
wx(n)ﬁ‘?é 01 %X(n ) o
7,0F ® 0 o 1, 0h-1)7

The measurement system is constructed to take the
absolute frame positions as input to the system, and thus
the observation equations are expressed in the form of

Having constructed the state-transition and observation
equations, it is important to set process and measurement
noise variance values reasonably, to ensure appropriate
execution as operation of the Kalman filter directly
depends on the values of the process noise variance Q and
the measurement variance R.

The measurement noise variance has shown to determine
how fast the Kalman filter reacts to the observations. A
relatively large measurement noise variance results in
loosing track of intentional camera movements as the
Kalman filter is ‘slow’ to believe the measurements, while
a relatively small value may cause inappropriate
stabilization as the Kalman filter will follow fluctuations
because it is ‘very quick’ to believe the measurements. It
is possible to set the measurement noise variance up front,
according to presumed jitter characteristics, a
measurement noise variance value reasonably close to the
actual jitter variance is found to enable adequate operation
throughout the stabilization process.

The process noise variance on the other hand, has shown
to condition the adaptability of the Kalman filter to
changes in the direction or speed of intentional camera
motion. A relatively small process noise variance restrains
the Kalman filter to constant velocity operation, in which
case intentional movements can not be tracked accurately
if camera motion dynamics change. A relatively large
process noise variance causes the Kalman filter to follow
measured global motion values closely, in which case it is
possible that the filtered output follows low-frequency
jitter that actually needs to be removed. The utilisation of
an intermediate process noise Vvariance results in
compromises in stabilization performance as well as
deliberate camera movement preservation. Furthermore
intensive stabilization may cause the correction vector to
exceed the limit of permitted frame shifts and cause a
blank region to be displayed within the visible image
frame. Instead of assigning the process noise variance to a
predetermined value, it is proposed in this paper to set it
adaptively according to previous correction vectors. A
small process noise variance is employed as default to
enable profound stabilization in general, however the
process noise variance is increased if the correction vector
approaches the limit of permitted frame shifts.

The state-transition and observation matrices, and the
process and measurement noise variances are plugged into
the generic Kalman filter equations to obtain a real-time
estimate for the horizontal and vertical camera positions



that make up the state variables. As the constant velocity
camera motion model directly smoothens the absolute
frame displacements, the correction vector for any frame
is obtained from the difference of the Kalman filtered and
the original absolute frame position;

Veor (1) = Xy (1) = X, (0) (5)

IV. RESULTS AND DISCUSSION

Figure 1 shows a sample frame of the off-road sequence
(source: http://www.cfar.umd.edu/~sirohey/ZD.html). The
corresponding absolute global frame displacements are
displaced in Figure 2. The sequence originates from a
camera mounted on a ground vehicle navigating on an
unsteady surface, advancing parallel to the vehicle in the
scene. The regularly increasing horizontal displacement
projects the motion of the camera vehicle, while the
irregular vertical displacements reflect the surface
structure.

Figure 1. Sample frame of the off-road image sequence
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Figure 2. Absolute raw frame displacements of the off-
road image sequence

It is seen from Figure 2 that the standard deviation (O ) of
absolute frame positions from the long-term movement
trajectory is particularly low for the horizontal direction,

and slightly larger for the vertical one. The standard
deviation for the horizontal direction is found to be about
1.5 pixels, while the standard deviation for the vertical is
found to be about 5 pixels. Ideally the measurement noise

variance R (= o’ ) would be set to a value in the range of
R ~3 for the horizontal and R ~25 for the vertical.
However, as standard deviation of jitter might be larger
for other sequences, the utilisation of higher measurement
noise variances in the range of R ~100 (corresponding to a
jitter standard deviation of 10 pixels) can be employed
successfully to provide robustness to varying jitter
characteristics.

The Kalman filtered frame positions for the off-road
sequence, having employed a relatively large process
noise variance of Q=0.1 is given in Figure 3. It is seen
that the positions of the stabilized sequence closely follow
the original ones. Although this has the advantage of
small correction vectors, that do not exceed the permitted
frame shift limit, the drawback is that the short-term
fluctuations encountered in the vertical are not stabilized.
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Figure 3. Raw and Kalman filtered (Q=0.1, R=100) frame
displacements of the off-road image sequence

The Kalman filtered frame positions for the off-road
sequence, having employed a relatively low process noise
variance of Q=0.0001 is given in Figure 4. Stabilization
intensity is increased, as the Kalman filter forces the
system to constant velocity operation more tightly,
however large correction vectors are encountered in the
horizontal direction, inclined to exceed the limit.
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Figure 4. Raw and Kalman filtered (Q=0.0001, R=100)
frame displacements of the off-road image sequence.

It is seen that a relatively low process noise variance is
preferable in the stabilization point of view as even short-
term fluctuations are smoothened. However if the motion
dynamics shows a change from the constant velocity
motion, the stabilizer is late to react to these changes at
low process noise variance as the Kalman filter enforces
stability of the constant velocity camera motion process.
For instance, for the off-road sequence the horizontal
camera ,velocity is about constant until frame sixty, at
which point the camera velocity changes due to vehicle
motion. At a low process noise variance the stabilized
sequence follows the original sequence closely to this
point, but is late to react to the changes in motion
dynamics causing the stabilized sequence to stay at the
former velocity, resulting in large correction vectors.
Therefore, correction vectors of up to 30 pixels are
99encountered in the horizontal direction for the low
process noise variance case.

Figure 5 shows an example construction, for the process
noise variance of the Kalman filtering process being
adaptively changed according to the magnitude of the
previous correction vector. A low process noise variance
is used if the Kalman filtered positions are close to the
original ones, and larger process noise variances are
employed if the filtered positions deviate from the original
case. In this case, the limit of permitted frame shifts is set
to 16 pixels, and the process noise variance is set
according to the last correction vector computed from
equation (5) in the form of:

ifv.(n-1)>14 Q, =05
else if V,(n-1)>11 Q, =0.2
else ifV.(n-1)>8 Q, =01
else Q, =0.0001

(6)
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Figure 5. Process noise variance values set adaptively
according to the last correction vector.

The resultant absolute frame positions for the Kalman
filtered off-road sequence with process noise variance set
adaptively according to (6) are displayed in Figure 6. It is
clearly seen that in the horizontal direction, the Kalman
filter adjusts to original position signal if the difference
(the correction vector magnitude) increases, realised by
the increased process noise variance. The maximum
correction vector magnitude has been found to be 13
pixels for the adaptive process noise stabilization process,
which is well within the 16 pixel constraint set to be the
limit of permitted frame shifts.
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Figure 6. Raw and Kalman filtered (Q: adaptively set
according to (6), R=100) frame displacements of the off-
road image sequence.

V. CONCLUSION
Image sequence stabilization by Kalman filtering using a
constant velocity camera motion model with adaptive
process noise variance has been presented. It is shown that
by changing the process noise according to the magnitude
of previous correction vectors, it is possible to combine
the superior stabilization performance gained at low
process noise variance with the improved adjustment
capability of high process noise variance. The typically
low process noise variance ensures increased stabilisation



intensity enabling the cancellation of short-term
fluctuations. With adaptation the process noise variance is
raised in cases where the correction vector amplitude
increases towards the limit of permitted frame shifts, to
ensure that the correction vector stays within the limit to
avoid blank regions to be displayed in the visible frame.
The simple recursive implementation of the Kalman filter
and simple control of the process noise variance enable
real-time utilisation of the proposed image sequence
stabilization system.
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