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ABSTRACT 
In this paper it is presented another method to 
determine the coefficients in B-spline interpolation.  
The problem is resolved in the context of generalized 
spline interpolation. To determine the coefficients from 
the input samples is first step for performing the 
interpolation. The operation is done by using also the 
values of the second derivative for the input signal. 
The coefficients are used to perform the signal 
reconstruction and interpolation by a factor m=2. The 
algorithms are tested on several known signals. The 
practical results are discussed at the end. 
 

I. INTRODUCTION 
A great part of today industrial processes tends to be 
computer programmed and digital controlled. To perform 
numerical processing it is needed an acquisition and 
analog to numeric conversion. Some of the procedures 
require operations like approximation, reconstruction, or 
interpolation. In many cases the given data are uniformly 
spaced. The presented methods and algorithms can be 
applied on samples of this type.  
The spline functions are successfully used in problems of 
function approximation, signal and image processing. 
From 1970 these functions were intensely developed on 
numerous directions. Functions like polynomial cubic 
spline or B-spline are combined with modern digital 
techniques in a new manner to provide faster algorithms 
and better results [1, 2]. 
Here we searched other methods to use spline functions 
in signal reconstruction and interpolation. We search the 
possibility to implement these methods on systems with 
digital signal processors. The new algorithms might be 
utilized in on-line applications and real-time signal 
processing. 
A known algorithm from the literature was studied 
previously [3]. The Unser’s algorithm is applied in image 
processing [2]. This was utilized in signal interpolation 
and some practical results were obtained [3]. The 

conclusions of the study were utilized to develop new 
methods for determining the B-spline coefficients [3, 4].  
Here we use the values for the second derivative of the 
input function in the knots to calculate the coefficients. 
The problem is to determine these values from the known 
input samples.  The methods are presented in this paper. 
We exemplify also some practical results. 

 
II. METHODS OF INTERPOLATION 

The input samples represent a set of discrete data 
y={y(k)}, k = 0, N-1, regularly sampled. The interpolation 
problem is to determine a function f(x) that pass through 
all the input data. For any k ∈{0, N-1} the values of the 
function are f(k) = y(k).  
The polynomial functions are frequently used for 
interpolation. Lagrange and Bernstein polynomials are 
well known methods used for resolving the problem. The 
polynomial spline functions were applied in the process 
of interpolation due to their properties. These are 
polynomial functions of degree n on adjacent intervals 
connected in the knots. The spline functions are 
continuous. Also, the function derivatives up to n-1 order 
are continuous [5]. 
To determine the interpolation function there were 
utilized systems of equations and matrix computational 
methods 5. This is the traditional approach of the 
problem. In these procedures are necessary many 
numerical calculations and is hard to make algorithms 
ready to implement on numerical systems. 
The concept of generalized interpolation represents a 
modern approach. This provides a larger view on the 
problem. This method needs two steps to perform the 
interpolation. 
First step is to determine some coefficients c(k) from the 
input data y(k). The interpolated values are obtained from 
these coefficients and not directly from the input values. 
In the generalized formulation the interpolated value f(x) 
it is obtained by convolving the coefficients string with a 
basis function [2]: 
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The advantage is to allow the use of a larger class of 
potential basis functions. In practice is necessary to 
determine the interpolated values of the function and not 
the exact structure of the interpolation function. Also the 
actual direction is to perform a good approximation with 
minimum effort instead to make an exact interpolation 
with greater computational costs.  
It can be said that the traditional interpolation is a 
particular case for the generalized interpolation: the 
coefficients are equal to the input samples. 
The process of generalized interpolation can be 
performed using digital filtering techniques. The solution 
is proposed in image processing in 1978 and developed 
later on multiple studies [1, 2].  
Michael Unser develops the idea and elaborates an 
algorithm that uses digital filters for interpolation [2]. A 
digital filter is applied to the input samples to obtain the 
coefficients. Another filter is used to find the interpolated 
values from these coefficients. The filters are determined 
using the cubic B-spline function: 
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For β3 (x) it is defined the discrete B-spline function 
b1

3(k): 
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The spline coefficients c(k) are obtained by applying the 
direct B-spline filter (3) to the input signal. The operation 
is called “direct B-spline transform”. The second step is 
called “indirect B-spline transform” and use the indirect 
B-spline filter Bm

n. For m representing the factor of 
interpolation, the function fn(x/m), denoted )(xf n

m  will be: 
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The coefficients are calculated by a recursive algorithm 
that implements the direct B-spline filter. This filter is 
divided in 2 filters: first a causal and the second anti-
causal [2]. The method requires some initial conditions 
[2] and introduces some side errors for the coefficients 
[3]. Those errors are transmitted in the interpolated signal 
and could have great importance especially if the input 
signal contains a small number of samples. 
We searched another ways to calculate the B-spline 
coefficients trying to reduce those errors. In a previous 
work [4] it was developed and implemented an algorithm 

that calculates the coefficients using the relation between 
a function that approximates the input signal, the function 
derivatives and the B-spline coefficients. There are 
presented several methods to calculate the values for the 
function derivatives. Because these values are imposed 
the process became Hermite interpolation. Every 
coefficient is determined using one of the previous 
coefficients and the first derivative of the function. It was 
studied the possibility to use also the second derivative 
for the function f (x). 

 
III. A METHOD BASED ON THE SECOND 

DERIVATIVE 
The function values and the values for the first and 
second derivatives of the input function were used in the 
traditional spline interpolation [7]. We took the idea and 
applied here to determine the coefficients for spline 
interpolation.  
Consider f(x) the cubic spline function that approximates 
the input function. It is passing trough all the input 
values, in the knots f(k) = y(k), k = 0, N-1.  
The relation involving the function and the coefficients 
c(k) can be write: 
 

6f(k) = 4 c(k) + c(k-1) + c(k+1).  (5) 
 
We want to find a relation between the coefficients, the 
samples values and the derivatives for the input function. 
The cubic B-spline derived function of second order it 
can be determined like: 
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The relation between the coefficients and the function’s 
second derivative is: 
 

 f”(k) = -2 c (k) + c (k-1) + c (k+1) .              (7) 
 
From the relations (5) and (7) it can be deduced that 
every coefficient can be determined like: 
 

c(k) = f(k) – f’’ (k)/6,   (8) 
 
where  f (k) = y (k) for k = 0, 1, …, N-1 (in the knots). 
The problem now is to establish the values for the second 
derivatives in the knots. We deal with digital data and it 
is necessary to determine the values of the divided 
differences for the input string. There were studied and 
will be presented 2 methods.  
The divided differences of second order can be defined 
like [6]: 
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From (8) and (9), the coefficients can be determined for 
any value of k by the next relation: 
 

c(k) = y(k) –( y(k+1) – 2y(k)+ y(k-1))/6. (10) 
 
The coefficients can be calculated by applying the digital 
filter H2D to the input signal. The transfer function for this 
filter is determined from (10) and is illustrated by: 
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It was searched a second method to determine the divided 
differences.  
It is demonstrated that stronger conditions of continuity 
can improve the convergence properties [5]. It means that 
the interpolation function is continuous and his 
derivatives up to the fourth order are continuous f(x)∈C4. 
We consider f(x) a polynomial function of 4 degree: 
 

   f(x) = a + b x  +d x 2 + e x 3+ g x 4.  (12) 
 
The function is analyzed on short intervals because it is 
piecewise polynomial. The function and the function 
derivatives of order 1 and 2 have been evaluated. The 
general formulation for the second derivative is: 
 

f” (k) = (-(f (k-2) + f (k+2)) +16(f (k-1) + f (k+1))-  
-30 f (k))/12. (13) 

 
In every knot k the function  f (k) pass thought the input 
samples f (k) = y (k). The algorithm for calculating the 
coefficients became: 
 

c (k) = y (k) - (-(y (k-2) + y (k+2)) +16(y (k-1)+   
+ y (k+1)) -30 y (k))/72.   (14) 

 
Using this method, the transfer function for the digital 
filter became: 
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A problem appears at the beginning and the end of the 
string. We can not use the presented methods to 
determine the firs and last coefficients. There are need 
some initial conditions. The functions are evaluated on 
short intervals to determine the initial values. It is used 
the same method like for the algorithm that utilize the 
first derivative for the approximation function [3]. 
The main advantage of this algorithm is that previous 
values of other coefficients are not used for calculate the 
current coefficient.  The algorithm is not recursive and 
the process of error propagation for determining the 
coefficients is not appearing.  The errors appear only 
from the process of calculating the values for the function 
derivatives. 

 
III. SOME COMPARATIVE RESULTS  

The two presented methods were used to determine the 
coefficients in several cases. We present the results for 
two types of signals. The analogical signals that have 
some discontinuities present a special interest. The input 
samples were acquired from the signals presented in 
figure 1. In figure 1a) it is presented a triangle wave. In 
figure 1b) we took a part from a square signal. 

 
a) triangle signal 

 
b) square signal 

Figure1. The input signals 
 
For the same input strings were calculated the 
coefficients c(k) using each of the two methods and it was 
performed the signal reconstruction and interpolation in 
every case. The filters with transfer function H2D(z) or 
H2P(z) (for each method) are applied on the input signal 
to obtain the coefficients c(k). The reconstructed signal 
yr(k) will be obtained at the system output. 
The interpolated values are obtained from the coefficients 
by the same method like in the Unser’s algorithm using 
(4). It was performed the interpolation by a factor m=2. 
The coefficients string is expanded by m=2 and brought 
as input for the filter B2

3(z).  The output is the 
interpolated signal yin(k). 
It can be observed that the coefficients follow the signal 
variation and are close to the samples values. The same 
results were achieved also for the algorithm presented by 
Unser in [2] and for the methods used in [4]. 
For the triangle signal we took two cases, depending on 
the sampling frequencies. From the same analogical 
signal, it was acquired y1(k) with 9 samples per period 
and y2(k) with 17 samples per period. In every case we 
calculate the coefficients and performed the interpolation 
by a factor m=2. There were analyzed the interpolation 
errors. It is to observe that for both signals the maximal 



values of the errors are on the same order. Table I 
presents these values for the 2 input strings in all the 
studied cases.  
 
Table I. Maximal interpolation errors for the triangle 
wave 

 H2D(z) H2P(z) 

y1(k) 0.05902777 0.06539351 
y2(k) 0.02951388 0.03269675 

 
The bigger errors are obtained near by the discontinuity 
points. A small number of samples are influenced. Using 
the second method to determine the coefficients we have 
more samples influenced by significant errors. On the 
parts were the signal is continuous the errors are very 
small (considered zero).  
We don’t take in discussion the side errors. 
For the square signal were obtained similar results.  
Major errors appear near by the discontinuity point. The 
extreme values are 0.16666666 in case of using H2D(z) for 
calculate the coefficients and 0.13599537 in the other 
case (H2P(z) being the transfer function for the filter). 
Also here the second method doesn’t offer much better 
results. In figure 2 are presented the interpolation errors 
for both methods used to determine the coefficients.  

 
a) for H2D(z) 

 
a) for H2P(z) 

Figure 2. Interpolation errors for the square signal. 
 

In all presented cases are small differences between the 
interpolation errors. It can be said that stronger conditions 
of continuity for the considered function f(x) don’t offer 

better results in the end. In [4] the interpolation errors 
were smaller for a function f(x)∈C4.  
 

IV. CONCLUSIONS 
There was presented an algorithm that use the second 
derivative values in the knots for calculating the 
coefficients in B-spline interpolation. We offered two 
methods for estimate the derivative values.  These 
approaches have a big advantage: the error propagation is 
avoided. There are used only the input samples to 
determine every coefficient. It is not a recurrent 
technique. Any coefficients errors does not influence the 
others values.  
A big advantage is that both methods can be easily 
implemented on a system with digital signal processor.  
But the second need supplementary operations. 
The two methods for estimate the derivative values in the 
knots offer similar results for the considered cases. Other 
practical examples are in study. It is to verify if the extra 
amount of computation necessary for the second method  
it is justified.  
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