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Abstract
The main difficulty in generating test patterns for
analogue and mixed-signal circuits is fault simulation.
Analogue fault simulation is much slower  than the
digital equivalent. Two of the techniques to speed up
the analogue fault simulation process are: fault
dropping/collapsing, in which faults that have similar
circuit responses compared with the fault-free circuit
response and/or  with another  faulty circuit response
are considered equivalent; and behavioural/macro
modelling, whereby par ts of the circuit are modelled at
a more abstract level, therefore reducing the
complexity and the simulation time. This paper
discusses behavioural/macro modelling in order  to
speed-up fault simulation for  analogue circuits.

I . Introduction
As transistor sizes keep shrinking, integrated circuits (ICs)
have been growing in size and complexity. This growth in
ICs causes testing to be much more difficult. For digital
circuits the problem of testing can be simplified by using
standard fault models and fast fault simulation. Faults in
digital circuits can be modelled as stuck-at, bridging and
open faults. These structural faults can then be used to
generate functional test vectors. The objective in
developing a test program for a digital circuit is to
determine whether or not a fault exists using the smallest
possible number of test vectors [2]. Therefore, test pattern
generation is the process of selecting an optimal set of tests
from all possible input patterns. This optimal test pattern
selection can be done in an ad-hoc manner for small and
simple circuits. For larger circuits the optimal set of tests
can be chosen using algorithms such as the D-algorithm or
PODEM [2].

A test pattern is evaluated by looking at its fault coverage.
All faults detected with this pattern can be dropped from
further consideration. Fault simulation is done for the
assessment of the fault coverage. There are number of fault

simulation techniques for digital circuits. Serial fault
simulation is perhaps the simplest method. For each fault,
a copy of the circuit with the fault inserted into it is
created. Then, all the faulty copies of the circuits along
with the fault-free original are simulated with the given
test patterns. If the output of a faulty circuit differs from
the fault-free output, that fault is considered to be
detectable.

Another fault simulation technique for digital circuits is
concurrent fault simulation [2]. The differences between
the faulty and the fault-free circuit behaviours might be
relatively small. Therefore, in concurrent fault simulation
the aim is to avoid redundant element evaluation when the
fault-free and faulty behaviours are the same, hence
reducing the computational effort.

Analogue and mixed-signal fault simulation has been
limited to the serial technique. Faster methods are not
easily applied to analogue and/or mixed-signal circuits,
because faults do not affect the circuit behaviour in a
binary manner.

One way to speed-up fault simulation for analogue and
mixed-signal circuits is to use behavioural or macro
models, where parts of the circuit are modelled at a more
abstract level, reducing the complexity and hence the
simulation time. In this paper we summarise research in
behavioural/macro modelling for speeding up analogue
fault simulation. The structure of the paper is as follows.
First, macromodelling for analogue circuits is presented.
Then behavioural modelling is discussed with a case study.
In section IV, behavioural modelling using Hardware
Description Languages (HDLs) is summarised. In secion
V, a behavioural fault model is developed in VHDL-AMS
for an opamp circuit operating in inverting amplifier
configuration. Finally, in section VI some conclusions are
drawn.



I I . M acromodels for  Analogue Circuits
Simulation at the transistor level for analogue circuits is
computationally very expensive. Therefore, one way to
reduce this high simulation cost is to partition a large
analogue circuit into smaller functional blocks such as
opamps and replace each functional block with its
macromodel or to describe each block using mathematical
equations (a behavioural model). This technique is
sometimes called hierarchical simulation [3].

The word macromodel usually refers to a compact
representation of a circuit that captures those features that
are useful for a particular purpose while discarding
redundant information [4]. Macromodels developed for
SPICE-like simulators are basically electrical networks
containing devices such as voltage-controlled voltage
sources instead of the full transistor network and with
fewer nodes than the original circuit.

Many circuits are designed in a modular style, in which
functional units are connected to achieve the design
specifications. The behaviour of the whole circuit is
determined by how the individual units interact with each
other, while what happens inside each is unimportant in
terms of the behaviour of the entire circuit. The accuracy
of a macromodel must, therefore, be defined in terms of
how closely its input-output behaviour matches that of the
original unit [4].

Since the early 1970s, a number of macromodels have
been developed, mainly for integrated operational
amplifier circuits (opamps) [3]-[14]. Boyle et al developed
a macromodel for integrated bipolar opamp circuits [5].
This macromodel was six times less complex (in terms of
the node count) than the original opamp circuit, and the
simulation time was an order of magnitude faster than the
device-level model.

The derivation of component values for the Boyle
macromodel is not, however, straightforward. Some
parameters are modelled using unbalanced input devices
and other parameters interact. Therefore, a modular
approach was suggested [8], in which a macromodel was
derived simply from the published data sheets. Individual
parameters were modelled separately and the results
combined to provide the output response. Since the
parameters were separated they did not interact and only
those required were included.

Recent research has focused on how to capture the effect
of a fault in an analogue circuit within its macromodel [1],
[3], [15]. In, [3] the fault macromodelling problem was
formulated in terms of deriving the macro parameter set,
B, based on the performance parameter set, P, (gain,
bandwidth, samples on the frequency or time response
curves, etc.) of the transistor-level faulty circuit. The
accuracy of the macromodel was evaluated by checking

the consistency of the performance parameter set, P,
between the transistor-level circuit and the macromodel.

Two steps are needed to obtain the macromodel for a
functional block within an analogue circuit [3]:
1. Perform transistor level fault simulation for each

faulty circuit to obtain the value of the performance
parameter set P

2. Map each performance parameter set P to the
corresponding macro parameter set, B. This is referred
to as parameter mapping.

It was assumed that the transistor-level fault list is given
and the macromodel structure and the performance
parameter set, P, to be matched are predetermined by the
circuit designer.

There are several ways to do parameter mapping. One
simple approach is based on analytical design equations
that express the macro parameter set, B, as analytical
functions of the performance parameter set, P, and the
value of B is derived by function evaluation. As analogue
ICs get more complex, this approach is becoming more
difficult. Another simple approach is to build an empirical
mapping function, B=F(P), based on a large number of
data pairs (P, B), referred to as the training set [3]. Usually
the training set is generated by randomly selecting M out
of the N performance parameter sets for the faulty circuits
obtained by transistor-level simulation and then the value
of the macro parameter set B for each selected P is
derived. The derivation of each data pair usually requires
multiple runs of macromodel-level simulation [3].

Macromodelling in general and fault macromodelling in
particular, using SPICE-like languages, nevertheless, have
been shown to be very difficult [1], [3]-[18]. Therefore,
another easier and perhaps more efficient way of
modelling analogue circuits at a higher level is necessary.

I I I . Behavioural Modelling
A behavioural model describes a circuit block in terms of
mathematical equations modelling the functionality of the
block, for example, in terms of the input-output
relationship. Behavioural modelling has been used for
speeding up analogue simulation in general [19] and
analogue fault simulation in particular [1], [15], [18], [20].
In [19], analogue circuits were modelled behaviourally in
the C programming language. Broyden’s method was used
to formulate and solve the model equations in a custom
simulator. Broyden’s method was originally proposed in
[21] as an algorithm for the solution of systems of
nonlinear equations, i.e. of the derivatives of a set of
functions. The main drawback with the work described in
[19] is that since the technique does not require derivatives
it cannot be used for small-signal analysis.

In [15], Chang et al presented a behavioural fault model
derived from a macromodel of a CMOS operational



amplifier from the IEEE Mixed-Signal Benchmark Suite
[22] (Figure 1).

The faulty macromodel was developed using DC-sweep
analysis. The DC behaviour of the benchmark opamp
operating in inverting, non-inverting and unity gain
amplifier configurations was first investigated under
different faulty conditions, as shown in Figure 2. Single
transistor catastrophic faults, bridging/short and nearly
open faults, and parametric faults with W (channel width),
L (channel length) and V t (threshold voltage) varied by
±10% were used for each transistor. Then an attempt was
made to group the different faulty behaviours. By
comparing the fault-free offset voltage measured at the
inputs of the opamp operating in one of the three
configurations with the equivalent faulty circuits, four
different equivalent fault types were derived [15]: M4
drain-to-gate short (Type I), M5 drain-to-source short
(Type II), M7 drain open (Type III), and M5 drain-to-
source short (Type IV). The first three fault types existed
for the opamp operating in the inverting configuration; the
Type IV fault group was found for the non-inverting
configuration.

Figure 1. The 2-stage CMOS Miller opamp  used in [15]
for behavioural fault modelling.

Figure 2. Three different configurations used in [15] for
the benchmark circuit given in [22]: (a) Inverting
amplifier, (b) non-inverting amplifier, and (c) unity gain
buffer.

The input offset voltage (measured between the non-
inverting and inverting inputs of the opamp in the closed-
loop configurations) and the output voltage versus the
input voltage for the fault-free opamp operating in the
three configurations were determined by HSPICE

simulations and are shown in Figure 3, Figure 4, and
Figure 5, respectively.

Figure 3. Input offset voltage and output voltage versus
input voltage for the fault-free inverting amplifier.

Figure 4. Input offset voltage and output voltage versus
input voltage for the fault-free non-inverting amplifier.

Figure 5. Input offset voltage and output voltage versus
input voltage for the fault-free unity gain buffer.



Figure 6. Input offset voltage and the output voltage for
the Type I fault.

Figure 7. Input offset voltage and the output voltage for
the Type II fault.

Figure 8. Input offset voltage and the output voltage for
the Type III fault.

Figure 9. Input offset voltage and the output voltage for
the Type IV fault.

The input offset voltage and the output voltage for each
fault group with respect to the input voltage were also
found by HSPICE simulations and are shown in Figure 6,
Figure 7, Figure 8, and Figure 9, respectively.

As can be seen from Figure 6 and Figure 9 responses
obtained for  Type II and Type IV faults are quite similar
to the fault-free responses in Figure 3 and Figure 4. Type
II and Type IV input offset voltages are somewhat
different from the fault-free responses. The input offset
voltage has a small DC level for Type II faults, but has a
non-linear characteristic for Type IV faults.

The remaining two faults have very different
characteristics to the fault-free equivalents for both input
offset voltages and output voltages. It can be concluded
from the figures that a Type I fault causes the inverting
amplifier output to be nearly stuck at a negative voltage
near to the negative supply voltage level. A Type III fault
causes the inverting amplifier output to have a non-
inverting characteristic for the negative values of the DC
input signal, and an inverting characteristic for the positive
values of the DC input signal. As can be seen from the
figures above, the input offset voltage at the inputs of the
opamp has a linear characteristic for Type I faults, and a
piecewise linear characteristic for Type III faults.

The macromodel given in Figure 10 for the inverting
opamp was used to derive the input output relationship
under fault conditions [15]:

( )[ ]kVmAV inCLout ++= 1 (1)

where ACL is the closed-loop gain for the opamp. The
parameters m and k are given in [15] as:
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and A represents the open-loop gain.

Figure 10. Macromodel used in [15] to derive the input-
output relationship for the closed loop inverting opamp.

The non-ideal effects such as the input offset voltage, Vos,
the finite open-loop gain, A, and the finite input and output
resistances, Rid (differential mode input resistance), Ricm
(common mode input resistance), Ro (output resistance),
and the resistances from output node to the supply rails
(Rdd and Rss) to model output stuck-at faults were taken
into account in deriving equation (1). Note that for the
fault-free case, Rid, Ricm, Rdd, Rss, and A would be
infinite, Vos, and Ro would be zero, hence 0→m , and

0→k . When a fault causes the output to be stuck at some
voltage level, 0→D , therefore 1−→m , and k is the
value of the stuck output voltage; the closed-loop gain,
ACL, is assumed to be unity. As they are dealt with
elsewhere [15], the derivation of the above equations will
not be given here.

In [15], the current limiting effect was also modelled. This
is due to the finite supply voltage at the output of the
opamp. It is claimed that the model covers all the
parametric faults and 92.5% of the catastrophic faults that
were considered. The model could not model M4 drain-to-
gate short, M5 drain-to-source short, M1 open-gate faults
for the non-inverting amplifier and M2 drain-to-gate short,
M4 drain-to-gate short, M5 drain-to-source short, M1 open
gate, M3 open source and M5 open gate faults for the unity
gain buffer.

IV. Behavioural modelling using HDLs
HDLs have been in use for behavioural modelling and
simulation of digital circuits as well as analogue electronic
systems, fluid concentrations in chemical processes, and
parachute jumps since 1960 [26]. Currently two of the
most widely used standards for modelling digital designs
are VHDL [23], and Verilog [24]. For analogue circuits,
the choice has been between  SPICE and proprietary
analogue HDLs.

Analogue HDLs support the description of systems of
differential and algebraic equations (DAEs). The solution
of these systems varies continuously with time. Most
analogue HDLs support both structural composition and
conservation semantics, in addition to behavioural
descriptions. Examples of such languages are FAS [27]
SpectreHDL [28] and Verilog-A [29].

Mixed-signal design has depended on the use of separate
HDLs for the analogue and digital parts or, again, on
proprietary languages. Mixed-signal languages support
both event-driven techniques and differential and algebraic
equations in one simulator. Simulators in this category are
MAST/Saber [30], VeriasHDL [30], AdvanceMS [27],
Hamster [31].

Both VHDL and Verilog have been extended to analogue
and mixed-signal design: VHDL-AMS [32], and Verilog-
AMS [29]. The analogue extensions to VHDL and Verilog
should alleviate the multiple-language problem [25].

Since VHDL-AMS was standardised in 1999 there has
been some work done on fault modelling using VHDL-
AMS. One reason for the limited progress is perhaps that
there is not yet a robust VHDL-AMS simulator available
that has all the VHDL-AMS constructs, such as procedural
statements, implemented. Perkins et al attempted to use
analogue VHDL for fault modelling and simulation with
very limited success [1]. The authors used the HDL-A
modelling language with the ELDO simulator from
Anacad. Behavioural model simulation using HDL-A and
ELDO was over 4.6 times slower than the macromodel
simulation carried out using HSPICE, as reported in [1].
One of the reasons was that the semiconductor device
models implemented in ELDO were not as efficient as
those in HSPICE.



V.  A VHDL-AM S behavioural fault model for  the
inver ting opamp

A VHDL-AMS model for the behavioural model given in
(1) is developed and given in Figure 11.

--behavioural opamp
LIBRARY DISCIPLINES;
LIBRARY IEEE;
USE
DISCIPLINES.ELECTROMAGNETIC_SYSTEM.ALL;
USE IEEE.MATH_REAL.ALL;

--entity
ENTITY op_behav IS
   GENERIC ( m : real := 0.0; --fault-free value
                      k : real := 0.0; --fault-free value
                     Acl : real := -1.0; --closed-loop gain

        rin : real := 4.0e5;);
  PORT (TERMINAL inn, outt : electrical);
END;

--architecture
LIBRARY DISCIPLINES;
LIBRARY IEEE;
USE
DISCIPLINES.ELECTROMAGNETIC_SYSTEM.ALL;
USE IEEE.MATH_REAL.ALL;

ARCHITECTURE behav OF op_behav IS
   quantity vout across iout through outt;
   quantity vin across iin through inn;

begin
iin  == (vin + (1.0 + m)*vin) / rin;
vout == Acl * (vin + m * vin + k);
end;

Figure 11. A VHDL-AMS behavioural fault model for the
inverting operational amplifier for the fault-free case.

As can be seen from the Figure 11, it is much simpler to
implement the behavioural model in VHDL-AMS
compared with the macromodel development using
SPICE-like languages.

V. Conclusion
In this paper, we have discussed behavioural and
macromodelling techniques in order to speed-up analogue
fault simulation process. We also have developed a
behavioural fault model in VHDL-AMS for an opamp
operating in inverting amplifier configuration. Capturing a
circuit behaviour under faulty conditions at a higher level
using mathematical equations (behavioural modelling) is
somewhat simpler than trying to come up with the
macromodels for that circuit. As VHDL-AMS and
Verilog-AMS have now been standardised, it should be
easier to develop behavioural fault models using these
standard languages.
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