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ABSTRACT 

In this paper, a circuit system of General Purposed 
Conic Section Function Neural Network is presented.  
The feed-forward analog computational cells have 
been designed by using the current mode approach. 
The network is trained in a chip-in-the-loop fashion 
with a host computer implementing the training 
algorithm. The network inputs and the feed-forward 
signal processing are analog. The mixed analog-digital 
design consists of 16 inputs, 16 hidden layer neuron 
and 8 outputs. 8 bit precision is selected to store 
weight, center and angle values on the EEPROM 
digital memory cells. The implemented feed-forward 
network circuitry has been tested on a classification 
problem successfully. 
 

I. INTRODUCTION 
Hardware realization of neural networks with their 
generalization capability is useful for numerous pattern 
recognition and signal processing applications. Neural 
network model require a lot of computing time to be 
simulated on a sequential machine resulting a great 
difficulty to investigate the behavior large neural 
networks and to verify their ability to solve problems. The 
neural system solves complicated problems by parallel 
operation of neurons. Performed in hardware, the 
operations performed by these circuits will take place in 
parallel, and in real-time [1]. As such, they will allow the 
neural network to converge at a higher speed than 
software-based counterparts. 
 
In literature, several architectures have been introduced 
for realization of artificial neural networks. Among the 
architectures, MLP and RBF probably are the two most 
widely used neural networks for practical applications. 
Due to complementary properties of these networks 
several attempts have been performed to bring MLPs and 
RBFs under unified framework to make simultaneous use 
of advantages of both networks. In [2], a hybrid Radial 
Basis Function-Multilayer Perceptron (RBF-MLP) 
network was used to improve performance. The Conic 
Section Function Neural Network (CSFNN) [3] is a 

unified framework for MLP and RBF networks to make 
simultaneous use of advantages of both networks.  
Fully analog implementations of CSFNN neurons [4] and 
fully digital implementations of CSFNN [5] exist in 
literature. In this paper, we propose mixed mode CSFNN 
architecture with combining the advantages of both 
analogue and digital realizations. The current mode 
analogue hardware is used in the forward pass calculation 
while digital memories are used to store network 
parameters. Chip-in-the-loop learning technique has been 
used to train CSFNN circuit. 
 
This paper organized as follows. In Section II the theory 
of Conic Sections Neural Networks is overviewed. 
General information of CSFNN circuitry is given in 
Section III. The circuit design flow is briefly described in 
Section IV. The feed-forward analog computation of 
CSFNN is examined in Section V. In Section VI the 
simulation results of the CSFNN neuron are showed.  The 
classification results of hardware realization for a 
benchmark problem are presented in Section VII. Finally 
conclusions are given in Section VIII.     
 

II. CONIC SECTION FUNCTION NEURAL 
NETWORKS 

The conic section function neural network (CSFNN), first 
described by Dorffner [3], is capable of making automatic 
decisions depending on the distribution of a given data. 
Decision boundaries hyperplane and hypersphere are the 
special cases of CSFNN. These are the decision 
boundaries of MLP and RBF, respectively. There would 
be intermediate types of decision boundaries such as 
ellipses, hyperbolas or parabolas in between those two 
cases which are also all valid for decision regions. 
Mathematically, the conic sections are formed from the 
intersection between a cone and a plane. 
The neural computation is different in hidden neurons and 
output neurons in CSFNN. Hidden neurons realize the 
propagation rule of CSFNN and sigmoid activation 
function. The output neurons are inner product type. The 
propagation rule of hidden neurons can be derived using 
analytical equations for a cone. The principle of a CSFNN 
is that the cone of each hidden unit can be adapted so as to 
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make an automatic decision on the most appropriate 
region boundary. The following equations are obtained for 
n-dimensional input space for CSFNN neuron. 
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                                                            (2)    
 
 

Where xpi refers to input vector for p. pattern, wij refers to 
the weights for each connection between the input and 
hidden layer, cij refers to center coordinates and ωj refers 
to opening angles. i and j are the indices referring to the 
units in the input and hidden layer, respectively. This 
equation consists of two major parts analogous to the 
MLP and the RBF. The equation simply turns into the 
propagation rule of an MLP network, which is the dot 
product (weighted sum) when ω is π/2. Second part of the 
equation gives the Euclidean distance between the inputs 
and the centers for an RBF network. Figure 1 illustrates 
the structure of a CSFNN. 
 

 
Figure 1.  Conic Section Function Neural Network structure 
 

III. GENERAL INFORMATION ABOUT CSFNN 
CIRCUITRY 

The implementation of CSFNN hardware differs in 
several aspects. In this section, the advantages and 
disadvantages of each aspect has been examined briefly. 
 

MIXED ANALOG/DIGITAL HARDWARE 
In the fully analog implementation of ANN, analog 
storages for weight values are capacitors, but these can 
store an analog voltage only for a short time because of 
charge leakage. The neural signal processing is fully 
analog, yielding high speed operation, low power 
consumption and compact circuitry. The main drawbacks 
of analog systems include sensitivity to ambient noise and 
to temperature. In the fully digital implementation of 
ANN, digital memory is good for long term weight 
storage, but on the other hand, the digital synapse and 
neuron circuits account for bigger size in silicon area. If 
high precision is not required, one can take full advantage 
of using an analog approach to build a neural architecture. 

By combining the advantages of both analog and digital 
realization of the ANN, mixed hardware design is a 
meaningful way to the implementation of ANN. In this 
paper, feed forward neural signal processing is fully 
analog; control unit and storage of the synaptic weights 
are fully digital. 
 

CURRENT MODE DESIGN 
Current mode signal processing offers several advantages 
when used in neural circuits. One of the most apparent 
advantages is that the summing of many signals is most 
readily accomplished when these signals are current. 
Arithmetic operations, such as addition, subtraction and 
scaling, are typically difficult to implement and it is often 
area- and power-consuming in a voltage-mode system. 
Other advantage is increased frequency of operation due 
to use of low-impedance internal nodes, and increased 
dynamic range of signals allowed when MOS transistors 
can be operated over a wide range of signals allowed 
when MOS transistors can be operated over a wide range, 
from weak inversion to strong inversion [6]. In this work 
hardware realization of feed-forward computation is 
composed of current mode analog circuits.  
 

 WEIGHT CENTER AND ANGLE STORAGE 
Learning in analog VLSI systems is inherently coupled 
with the problem of storage of analog information since 
after learning it is most often desirable to retain the 
learned weights for an extended period of time. Ideally, 
weights would be held in a long-term, easily-modified 
store. In practice, permanence of a stored weight (e.g. on a 
floating gate) must be traded against the ease of its 
modification [7]. In this study the weight, center and 
angle values are stored on on-chip floating gate devices. 
 

WEIGHT PRECISION 
Before designing circuits to implement neural 
computations, it is necessary to determine the precision 
requirements. Although precision requirements are 
somewhat problem dependent, in general, five-bit weight 
registers are sufficient for forward computations, but 12 
bit resolutions is necessary for learning [8]. For this work, 
after doing simulations for several bit resolutions for 
weight, center and angle values, 8 bit (plus 1 sign bit) 
precision is chosen to store these values on the digital 
memory for acceptable network training.  

 
LEARNING MODES 

In literature, there are different approaches to train Neural 
Chips [9].  
 
Off-chip Learning  
Here the chip plays no part in the training process. A 
computer simulation is used to find the solution weight set 
and these weights are downloaded onto chip. Clearly, the 
problems associated with this technique arise from the 
fact that the network implemented on the chip is not 
identical to that simulated on the computer. 
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On-chip Learning  
In this method, the training takes place entirely on the 
chip. Only the training data is supplied to the chip, and 
on-chip weight adaptation hardware modifies the synaptic 
weights according to the implemented learning rule. 
Improved performance (training speed) comes at the cost 
of less flexibility.  
Chip-in-the-Loop Learning 
This technique relies on a host computer to train the chip. 
This computer supplies the training vectors, and the chip 
is used ‘in-the-loop’ to generate the neural network 
outputs. The computer reads the outputs and then 
calculates the weight updates. The updated weights are 
downloaded to the chip before the next training iteration. 
Once training is complete, the host computer is no longer 
required. Since the analog hardware is used in the forward 
pass calculation, circuit anomalies can be compensated for 
during the learning process. In this study, chip-in-the-loop 
learning technique is used to overcome typical analogue 
process variations. The block diagram of chip in the loop 
learning technique used for training our hardware is 
shown in Figure 2. 
 

 
Figure 2. The Block Diagram of Chip-in-the-loop Learning 

Technique 
 

IV. THE CIRCUIT DESIGN FLOW 
The overall circuit is divided into two main parts with 
regard to their operating modes, i.e. analog and digital. 
The block diagram of implemented CSFNN circuitry is 
illustrated as Figure 3. The neural signal processing is 
fully analog and the synaptic weights, centers and angles 
are stored as digital form. It is a fully interconnected 
feedforward structure with 16 current mode analog inputs, 
16 hidden layer neurons and 8 outputs. The weight, center 
and angle values are stored on on-chip floating gate 
devices. Current mode analog circuits are used for feed-
forward neural processing. The digital weights, centers 
and angels is converted analog signals through the use of 
D/A circuits. Negative weights is converted the analog 
signals using the sign bit circuit integrated into presented 
D/A converter circuit. The general purpose neural-
network circuit system is problem independent. 
Reconfigurability is obtained with switching circuits 
which has the ability to alter the topology of the neural 
network. Switching circuit is controlled by digital control 

unit. Reconfiguration switches inserted in the 
interconnection between DAC outputs and network 
inputs.  
Digital block contains digital memories, digital control 
unit and decoders needed to address and to access 
memories. The weight, center and angle values are stored 
on on-chip digital floating gate memory cells with 8 bit 
precision. These digital values are selected, red and 
written by the row, column and block decoders, read and 
write circuitry. 704 Byte floating gate memory cells are 
designed to store these values.  
The feed-forward computation is realized in analog block 
which detail examined in Section V. 
 

 
Figure 3. The Block Diagram of Implemented CSFNN Circuitry 
 
V.  ANALOG FEED_FORWARD COMPUTATION 

In this work, the feed-forward neural computation is fully 
analog. Analog circuitry is composed of current mode 
circuits to easily realize the arithmetic operations, such as 
addition, subtraction. The neural computation is different 
in hidden neurons and output neurons. Hidden neurons 
realize the propagation rule of CSFNN (Eq 1). The output 
neurons are inner product type, and have sigmoid-like 
activation function. The whole network composed of 
computation units such as multiplication circuits, square 
root circuits, squarer circuits, sigmoid generator circuits. 
A functional diagram of CSFNN neuron circuitry for 
hidden units is shown in Figure 4. The output neurons are 
composed of only multiplication circuits, sigmoid 
generator circuits. 
 

 
Figure 4. Functional diagram of CSFNN neuron circuitry 



 
VI. THE SIMULATION RESULTS OF THE CSFNN 

NEURON CIRCUITRY 
Cadence software tool has been used to simulate the 
implemented the circuits performed with Spectre in 
Analog Artist environment. The simulations have been 
done to the neuron circuitry to obtain decision boundaries 
using Cadence with AMIS 0.5µm CMOS transistor model 
parameters with 5V voltage supply. Different type 
decision boundaries have been obtained using only one 
CSFNN neuron circuitry. Open and closed decision 
boundaries and intermediate types of decision boundaries 
in between those two cases are realized. The decision 
boundaries of the straight lines for MLP, the circles for 
RBF and the transition from the straight line to the circles 
are shown in Figure 5, Figure 6, Figure7, respectively. 
 

 
Figure 5. Open decision boundaries (MLP) 

 

Figure 6. Closed decision boundaries (RBF) 
 

VII. PATERN CLASSIFICATION APPLICATION 
The implemented circuit of CSFNN networks has been 
applied to a highly nonlinear pattern recognition 
benchmark to ensure performance of designed circuitry. 
The small version of an IRIS plant classification problem 
constituted pattern recognition benchmark.  The data set 
contains 3 classes where each class refers to a type of 

IRIS plant. Each pattern was described with 4 structural 
attributes of the plant. The training set contains 12 
patterns, 4 from each pattern class. The test set contains 
75 patterns, 25 from each pattern class. 
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Figure 7. Transition decision boundaries from MLP to RBF 

 

A CSFNN with 3 hidden neuron (i.e.  4-3-2) was used to 
solve the problem. The circuitry was trained chip-in-the-
loop technique. The back-propagation algorithm was 
implemented on a host computer during the training. 
Training has been achieved within 60 epochs software-
only environment, then 15 epochs with chip-in-the-loop 
technique. After doing 75 iterations, success rate of 100% 
has been obtained with training set. The test set presented 
to the implemented circuitry without using the host 
computer and achieved 94.67% success rate.  
Training and testing process has also been performed at 
the software-only environment (MATLAB 7.0) using 
CSFNN network with 75 iterations. The same 
performance was obtained with chip-in-the-loop 
technique for the training set and 96% success rate was 
achieved with test set. This comparison demonstrates that 
the implemented circuitry and applied chip-in-the-loop 
learning technique have been successfully used for 
classification problems on condition with 16-16-8 
maximum network size. The classification rates for 
software-only environment and chip-in-the-loop learning 
technique are summarized at Table I. 
 
Table I. Simulation results for the classification problem 

Chip-in-the-Loop 
Learning 

Software-only 
Environment 

Train (%) Test (%) Train (%) Test (%) 
100 94.67 100 96 

 
VIII. CONCLUSION 

In this work, a circuit system of General Purposed Conic 
Section Function Neural Network is designed. The 
implemented circuit system is problem independent. The 
chip architecture allows reconfigurable topologies. The 



whole system comprises analog and digital blocks. The 
neural signal processing is fully analog and the synaptic 
weights, centers and angles are stored as digital form. 
Feed-forward computation realized with current mode 
analog subcircuits. This implementation computes the 
Radial Basis Function (RBF) and Multilayer Perceptron 
(MLP) propagation rules with unified framework on a 
single hardware. Open and closed decision boundaries and 
intermediate types of decision boundaries in between 
those two cases are realized with only one CSFNN neuron 
circuitry to show the functionality of CSFNN neuron. The 
implemented circuitry has been applied to highly 
nonlinear pattern recognition benchmark to ensure 
performance of designed circuitry. Training process 
realized chip-in-the-loop learning technique.  Successful 
classification performance is obtained for this problem. In 
further work, CSFNN network will be applied an image 
recognition problem.  
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