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Abstract 

 
The recent development in the aeronautic domain is 
characterized by a high flexibility aircraft which results in a 
stronger interaction between the flight control system, 
structural and aerodynamic. The robust control is needed to 
meet the desired performance specification. This paper 
presents a robust control of flexible aircraft wing using 
LQR, LQG/LTR and ∞H/H2 techniques. In the first step a 

linearized model of an aeroelastic wing is presented and a 
theory of robust control is developed. At the end an 
application of simulation show the closed loop system is 
guarantied to be stable and meet the performance 
requirements. 
 

1. Introduction 
 
     Aeroelasticity, and in particular flutter, has influenced the 
evolution of aircraft since the earliest days of flight. For modern 
high-speed aircraft, aeroelasticity phenomena have even more 
far-reaching effects upon the structural and aerodynamic design. 
The simultaneous presence of the aerodynamic, inertia, and 
elastic forces makes this a truly interdisciplinary problem. 
Aerodynamic lifting surfaces undergoing a manoeuvre may 
experience a self-excited oscillation, referred to as flutter that 
may often be destructive, wherein energy is absorbed from the 
fluid and leads to large-amplitude oscillations of the lifting 
body. Therefore, it is imperative that the occurrence of flutter 
phenomena on wings be suppressed in order to avoid failure of 
the structure due to large deformation/deflection. 
     In the modern aviation, proprieties of flight control systems 
are commonly included in the analysis as well, since the closed 
loop nature of such systems can interact with aeroelastic 
phenomena. This study having the objective of analysing control 
systems considering aeroelastic interactions is commonly 
referred to as aeroservoelasticity. 
     Accurate multivariable state space model is therefore 
required to support control laws synthesis using modern control 
techniques (LQG, ∞H/H 2 ).  

     Many studies have focussed in this domain like [1, 2] which 
present open and closed loop flutter analysis using Roger 
approximation. Ko, W.Strganac and J.Kurdila [1], investigate 
nonlinear and adaptive control problem for suppressing flutter in 
typical wing section with torsional nonlinearity. D.Eller and 
S.Heinze [5], investigate the minimization of the introduced 
drag of highly flexible wing by using multiple control surfaces.  
      

     J. Johansen [6] presents a report describing numerical 
investigation of two-dimensional unsteady airfoil flows with 
application to aeroelastic stability. The report is divided in two 
parts. Part A describes the purely aerodynamic part, while Part 
B includes the aeroelastic part. 
 

2. Airfoil equation of motion 
 

Consider the typical section shown in fig.1 
 

 
 

Fig.1. Wing typical section. 
 

     The wing is mounted on flexible support witch has a 
translation spring with stiffness hK and a torsion spring with 

stiffness TK . These springs are attached to airfoil at the shear 
center. Therefore, it is two degrees of freedom motion. Denoting 
h and α as plunge and pitch variable. Let’s put the trailing edge 
flap at the airfoil witch is hinged at bcx =  with a deflection β . 
     The equations of motion for this aeroelastic system are 
obtained as: 
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Where m is the mass of wing, θr is the radius of gyration and 

θx is a distance from the coordinate to the mass center, 

MF  and are the unsteady aerodynamic force and moment 
resulting from the noncirculatory and circulatory flows 
expressed as 
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The various T functions are Theodorsen’s coefficients dependent 
on the geometry of the wing, and the Theodorsen function 

( )kC is defined as: [1] 
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The aerodynamic forces are divided into circulatory and 
noncirculatory force, 
                                        ncc Λ+Λ=Λ                                  (6) 
The noncirculatory forces are given by 
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The circulatory forces are given by 
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3. Unsteady aerodynamic forces approximation 

 
     For the aeroservoelastic analysis and design, it is necessary to 
transform the equations of motion into the state space form. This 
requires approximating the frequency domain unsteady 
aerodynamic forces in terms of rational functions of Laplace 
variable. 
     In this paper, we use Roger’s method to approximate the 
unsteady aerodynamic forces in the following form. 
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Where 's is the no-dimensionalized Laplace variable 

Vsbiks /' ==  

2−jγ  is the aerodynamic poles witch are usually preselected in 

the rang of reduced frequency of interest. 
Let’s define the calculation of aerodynamic forces as  
 
                              ( )[ ] ( )[ ] ( )[ ]  ''' sGisFsA +=                              (8) 
 
The real and imaginary part of the approximated aerodynamic 
matrix will be 
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The real matrices [ ]jP are determined using least square 
technique for a term by term fitting of the aerodynamic matrix. 
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The augmented aerodynamic state is defined as follows 
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Then, the state space equation of motion with the trailing edge 
surface control is expressed in the following form: 
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4. Control design 

 
     In this section, we interest to present an overview of the 
robust control (LQR/LQG, H2/ ∞H ) used in the simulation. 

 
4.1. LQR/LQG controller 
 
     Consider the linear time invariant state space equation 

                                     
Cxy

BuAxx
=

+=
.

                                      (15) 

Where A is the system matrix, B is the control matrix, and C is 
the output matrix. LQR theory determines the optimal gain 
matrix K such that the state-feedback law Kxu −= subject to 
minimise the quadratic cost function 
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∞
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Where, Q and R are the weighting matrices. The corresponding 
optimal control is given by  
 
                                PxBRKxu T1−=−=                               (17) 
 
Where, K is optimal feedback gain matrix, which can be 
obtained from the Riccati matrix P. The Riccati matrix is 

determined by the solution of the following steady state Riccati 
equation. 
 
                  01 =+−+ − QCCPBPBRPAPA TTT                   (18) 
 
4.2. Standard ∞H  control 
 
 
 
 
 
 
 
 

Fig. 2.  Standard ∞H  block diagram 
 
     To apply the optimal ∞H design method, we need to cast the 
problem into genera output feedback problem shown in Fig.2. 
For a stable, proper, real rational linear time-invariant system, 
the transfer function from w to z is a linear fractional 
transformation of P on K: 
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1
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−−+==               (19) 
 
The optimal ∞H design problem is to find a real rational proper 
K over all the stabilizing controllers which minimize the 

∞H norm of the transfer matrix from w to z, i.e. 
 
                                       ∞zw

ngKstabilizi
Tmin                               (20) 

 
The detailed state space formulae for the solution of the optimal 

∞H design problem are presented in [3]. The controller can be 
obtained by solving two coupled algebraic Riccatti equations 
and the algorithm is implemented in the Robust Control Toolbox 
[8]. 
 
4.3. Loop-shaping ∞H control 
 
     Consider the multivariable feedback control system showing 
in the fig.3 

 
 

Fig. 3.  Mixed sensitivity problem 
 

The mixed sensitivity problem is to find a stabilizing 
controller )(sK such that the closed-loop transfer function is 
internally stable and satisfy: 
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Where ( ) 1−+= GKIS ,   a sensitivity transfer function 

( ) 1−+= GKIGKT , a complementary sensitivity transfer 
function 
The weighting functions )(sWs and )(sWT are added to the 
system to regulate the flutter and meet the desired performance 
specification for Plunge and Pitch response. 
 

5. Simulation results 
      
     In the first step, let’s design the flutter suppression system 
using the Roger’s method ( 8.0,6.0,4.0,2.0=γ ) and the 
following airfoil data. [1] 

 40 0.00625,r 0.25,r 

0.0125,x 0.2,x 1,b 0.6,c  -0.4,a

300rad/sec  sec,/100   sec,/50

22
==

=====

===

μ

ωωω

βθ

βθ

βθ radradh

 

     The open loop flutter analysis consists of solving the 
eigenvalue problem associated with the airspeed. The first 
airspeed for which one of the system eigenvalues exhibits a zero 
real part is known as the open loop flutter speed, the speed at 
which the system becomes unstable. 
     The result in fig. 5 shows that the model has a flutter speed of 
about 300 ft/sec and flutter frequency around 78 rad/sec which 
is the pitching mode dominant. 

 
           

Fig. 5. Open loop flutter analyses 
 
     The closed loop result shows the flutter suppression using the 
LQR controller, it can be seen also, that the controller stabilise 
the unstable pitching mode for different speed (in this case we 
use V=320ft/s and c=0.5).  

 
 

Fig. 6. Close loop flutter analysis using LQR regulator 

 
 

Fig.7. Close loop flutter analysis using ∞H controller 
 

     We observe that the weighted H2/ ∞H  controllers are better 
for the flutter suppression than the classical controller LQR and 
LQG. 
     Fig.8 shows the open loop step response system with the 
plunge and pitch mode only. 

 
 

Fig. 8. Open-Loop step response  
 
     Fig. 9, Fig. 10, Fig. 11 and Fig. 12 show the closed loop 
response of the model using different controllers LQR, 
LQG/LTR, H2 and ∞H . It is observed that both variables are 
quickly regulated. The weighted H2 / ∞H controller show better 
performance and robustness than the classical controllers. A 
norm of 99.0=∞wzT was achieved. 

 
 

Fig. 9. Step response using LQR controller 
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Fig.10. Step response using LQG/LTR controller  

 
 

Fig.11. Step response using H2 controller 

 
 

Fig. 12. Step response using ∞H  controller 
 

     Fig.13, it can be seen that the control surface deflections 
remained small in the simulation. The H2 and ∞H  controllers 
reduce significantly the control surface deflections. 

 
 

Fig. 13. Control surface deflections  
 

6. Conclusion 
 
     In this paper, a model mathematic was developed for a 
typical airfoil with trailing edge control surface. For the 
aerodynamic model, the unsteady aerodynamic forces were 
approximated by using Roger’s method since Roger’s method is 
very simple and accurately transform the unsteady aerodynamic 
forces from frequency domain into time domain. Different 
methods were used to control the surface deflection to meet the 
desired specification on the plunge and pitch response and 
flutter suppression. In the first the classical LQR and LQG/LTR 
controllers were used, the obtained results were acceptable. The 
weighted controller H2/ ∞H  shows better to meet the desired 
performance and robustness specifications with reasonably 
small control deflection angles. Future investigation will address 
to model with multiples surfaces of deflection and others 
controllers like μ method. 
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