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Abstract

The recent development in the aeronautic domain is
characterized by a high flexibility aircraft which results in a
stronger interaction between the flight control system,
structural and aerodynamic. The robust control is needed to
meet the desired performance specification. This paper
presents a robust control of flexible aircraft wing using
LQR, LQG/LTR and H, /H,, techniques. In the first step a

linearized model of an aeroelastic wing is presented and a
theory of robust control is developed. At the end an
application of simulation show the closed loop system is
guarantied to be stable and meet the performance
requirements.

1. Introduction

Aeroelasticity, and in particular flutter, has influenced the
evolution of aircraft since the earliest days of flight. For modern
high-speed aircraft, aeroelasticity phenomena have even more
far-reaching effects upon the structural and aerodynamic design.
The simultaneous presence of the aerodynamic, inertia, and
elastic forces makes this a truly interdisciplinary problem.
Aerodynamic lifting surfaces undergoing a manoeuvre may
experience a self-excited oscillation, referred to as flutter that
may often be destructive, wherein energy is absorbed from the
fluid and leads to large-amplitude oscillations of the lifting
body. Therefore, it is imperative that the occurrence of flutter
phenomena on wings be suppressed in order to avoid failure of
the structure due to large deformation/deflection.

In the modern aviation, proprieties of flight control systems
are commonly included in the analysis as well, since the closed
loop nature of such systems can interact with aeroelastic
phenomena. This study having the objective of analysing control
systems considering aeroelastic interactions is commonly
referred to as aeroservoelasticity.

Accurate multivariable state space model is therefore
required to support control laws synthesis using modern control
techniques (LQG, H, /H.,).

Many studies have focussed in this domain like [1, 2] which
present open and closed loop flutter analysis using Roger
approximation. Ko, W.Strganac and J.Kurdila [1], investigate
nonlinear and adaptive control problem for suppressing flutter in
typical wing section with torsional nonlinearity. D.Eller and
S.Heinze [S], investigate the minimization of the introduced
drag of highly flexible wing by using multiple control surfaces.

J. Johansen [6] presents a report describing numerical
investigation of two-dimensional unsteady airfoil flows with
application to aeroelastic stability. The report is divided in two
parts. Part A describes the purely aerodynamic part, while Part
B includes the aeroelastic part.

2. Airfoil equation of motion

Consider the typical section shown in fig.1

Fig.1. Wing typical section.

The wing is mounted on flexible support witch has a
translation spring with stiffness K, and a torsion spring with

stiffness K . These springs are attached to airfoil at the shear
center. Therefore, it is two degrees of freedom motion. Denoting
h and ¢ as plunge and pitch variable. Let’s put the trailing edge
flap at the airfoil witch is hinged at x =hc with a deflection .

The equations of motion for this aeroelastic system are
obtained as:

m mxg mxg h

mxg mrg mrg2 +mxg (bc - ba) ap+

| mxp mrg2 +mxg (bc - ba) mr[% Yij
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Where m is the mass of wing, rgis the radius of gyration and

xgis a distance from the coordinate to the mass center,

F and M are the unsteady aerodynamic force and moment
resulting from the noncirculatory and circulatory flows
expressed as
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The various 7 functions are Theodorsen’s coefficients dependent
on the geometry of the wing, and the Theodorsen function

C(k)is defined as: [1]

C(k)= 054 00075 010055 6)
Jjk+0.0455  jk+0.3

The aerodynamic forces are divided into circulatory and
noncirculatory force,

A=A, +A, ©)
The noncirculatory forces are given by
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The circulatory forces are given by
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3. Unsteady aerodynamic forces approximation

For the aeroservoelastic analysis and design, it is necessary to
transform the equations of motion into the state space form. This
requires approximating the frequency domain unsteady
aerodynamic forces in terms of rational functions of Laplace
variable.

In this paper, we use Roger’s method to approximate the
unsteady aecrodynamic forces in the following form.

4, )=[R 1+ R +[P)s> + ﬁ:ﬂ ™)

=35 t7j-2

Wheres is  the no-dimensionalized variable
s =ik=sb/V

¥ j—» is the acrodynamic poles witch are usually preselected in

Laplace

the rang of reduced frequency of interest.
Let’s define the calculation of aerodynamic forces as

s )= [ s ol ) ®)

The real and imaginary part of the approximated aerodynamic
matrix will be

el )= R+ ()2 + i(_[%l)% ©)

-2

(10)
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The real matrices [P_/Jare determined using least square

technique for a term by term fitting of the aerodynamic matrix.
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The augmented aerodynamic state is defined as follows
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Then, the state space equation of motion with the trailing edge
surface control is expressed in the following form:
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4. Control design

In this section, we interest to present an overview of the
robust control (LQR/LQG, Hy/ H,, ) used in the simulation.

4.1. LQR/LQG controller

Consider the linear time invariant state space equation

)‘C = Ax+ Bu (1 5)
y=Cx

Where A is the system matrix, B is the control matrix, and C is

the output matrix. LQR theory determines the optimal gain

matrix K such that the state-feedback law u = —Kx subject to

minimise the quadratic cost function

J= j'(xTQx +ul Ru)dt (16)
0

Where, O and R are the weighting matrices. The corresponding
optimal control is given by

u=—Kx=R"B"Px (17)

Where, K is optimal feedback gain matrix, which can be
obtained from the Riccati matrix P. The Riccati matrix is

determined by the solution of the following steady state Riccati
equation.

PA+A"P-PBR'B"P+CToC =0 (18)

4.2. Standard H_, control

w —p —» Z
exogenous P(s) regulated
input output

u y
control K@) ¢ measured
input output

Fig. 2. Standard H,, block diagram

To apply the optimal H,, design method, we need to cast the

problem into genera output feedback problem shown in Fig.2.
For a stable, proper, real rational linear time-invariant system,
the transfer function from w to z is a linear fractional
transformation of P on K:

-1
T, = F(P,K)= Ry + RyK(I - PLK) ' Py 19)
The optimal H,, design problem is to find a real rational proper

K over all the stabilizing controllers which minimize the
H_, norm of the transfer matrix from w to z, i.e.

min ||T ZW"
Kstabilizing °°

(20)

The detailed state space formulae for the solution of the optimal
H.,, design problem are presented in [3]. The controller can be

obtained by solving two coupled algebraic Riccatti equations
and the algorithm is implemented in the Robust Control Toolbox

(8].

4.3. Loop-shaping H., control

Consider the multivariable feedback control system showing
in the fig.3

controller Flant

—» Els) Gis)

Reference ]

Y

Fig. 3. Mixed sensitivity problem

The mixed sensitivity problem is to find a stabilizing
controller K(s)such that the closed-loop transfer function is
internally stable and satisfy:
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Where § = (I +GK )_1 , asensitivity transfer function

T =GK (] +GK )71 , a complementary sensitivity transfer
function

The weighting functions W, (s) and Wj (s)are added to the

system to regulate the flutter and meet the desired performance
specification for Plunge and Pitch response.

5. Simulation results

In the first step, let’s design the flutter suppression system
using the Roger’s method (¥ =0.2,0.4,0.6,0.8) and the
following airfoil data. [1]

@, =50rad / sec, @y =100rad/sec, @z =300rad/sec

a=-0.4, c=0.6,b=1,x¢ =02,x 5 =0.0125,

r9 = 0.25,1 50.00625, 1 = 40

The open loop flutter analysis consists of solving the
eigenvalue problem associated with the airspeed. The first
airspeed for which one of the system eigenvalues exhibits a zero
real part is known as the open loop flutter speed, the speed at
which the system becomes unstable.

The result in fig. 5 shows that the model has a flutter speed of
about 300 ft/sec and flutter frequency around 78 rad/sec which

is the pitching mode dominant.
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Fig. 5. Open loop flutter analyses

The closed loop result shows the flutter suppression using the
LQR controller, it can be seen also, that the controller stabilise
the unstable pitching mode for different speed (in this case we
use V=320ft/s and c=0.5).
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Fig. 6. Close loop flutter analysis using LQR regulator
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Fig.7. Close loop flutter analysis using H,, controller

We observe that the weighted Hy/ H,, controllers are better

for the flutter suppression than the classical controller LQR and
LQG.
Fig.8 shows the open loop step response system with the
plunge and pitch mode only.
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Fig. 8. Open-Loop step response

Fig. 9, Fig. 10, Fig. 11 and Fig. 12 show the closed loop
response of the model using different controllers LQR,
LQG/LTR, H, and H,, . It is observed that both variables are

quickly regulated. The weighted H2 / H,, controller show better
performance and robustness than the classical controllers. A
norm of "T vz "m =0.99 was achieved.
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Fig. 9. Step response using LQR controller
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Fig.11. Step response using H, controller
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Fig. 12. Step response using H,, controller

Fig.13, it can be seen that the control surface deflections
remained small in the simulation. The H, and H., controllers

reduce significantly the control surface deflections.
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Fig. 13. Control surface deflections
6. Conclusion

In this paper, a model mathematic was developed for a
typical airfoil with trailing edge control surface. For the
aerodynamic model, the unsteady aerodynamic forces were
approximated by using Roger’s method since Roger’s method is
very simple and accurately transform the unsteady aecrodynamic
forces from frequency domain into time domain. Different
methods were used to control the surface deflection to meet the
desired specification on the plunge and pitch response and
flutter suppression. In the first the classical LQR and LQG/LTR
controllers were used, the obtained results were acceptable. The
weighted controller Hy/ H,, shows better to meet the desired

performance and robustness specifications with reasonably
small control deflection angles. Future investigation will address
to model with multiples surfaces of deflection and others
controllers like p method.
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