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Abstract 
 

A study of two port network fractional order oscillator 

is presented in this paper. The presented oscillator 

consists of a general two port network and three 

impedances. The oscillator design depends on the 

numbers of elements in the two port network 

transmission matrix. Networks with only single 

element in its transmission matrix is discussed which 

gives four possible networks. The impedances 

associated with the studied networks are series or 

parallel connection of resistors in addition to 

fractional order capacitors. The characteristic 

equation, oscillation frequency and condition for each 

combination are introduced. Numerical discussions of 

the presented oscillators with Spice simulations are 

presented. 

 

1. Introduction 
 

A two-port network is an electrical network with two ports 

for input and output. The port is characterized by the voltages 

and currents at its input and output terminals. The terms relate 

these voltages and currents are called parameters which 

completely describe the network behavior [1]. The transmission 

matrix is one of the famous ways to characterize the network 

which is suitable for cascaded connection. It relates the input 

port with the output port as follows: 
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Enormous amount of literature employ the two port network 

in many applications in the field of electrical engineering [2-4], 

control engineering [5] and mechanical engineering [6]. Novel 

non-balanced non-matched cross-coupled oscillators was 

demonstrated in [2] with the use of the two-port network 

transmission parameters. All possible canonical second-order 

single transistor oscillators derived from the general class-A or 

class-B two-port network topologies was presented in [3]. A 

linear transformation based on the two port network concept 

used in building LC ladder filters was presented in [4]. 

The fractional calculus is the branch of mathematics 

generalizes the integer order differentiation and integration. It 

was known since the integer calculus, yet its breakthrough in the 

field of science and engineering started in the early sixty [7-15]. 

It has lots of contributions in biomedical engineering [7], control 

engineering [8-9], signal processing [10], and electrical 

engineering [11-15]. One of the famous definitions of the 

fractional order derivatives is the Riemann-Liouville definition 

described by: 
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where   is an integer such that (   )     . The 

fractional calculus adds extra degree of freedom which is the 

fractional order parameter. This advantage increases the design 

flexibility and controllability. 

The idea is to employ a two port network with only one 

element in its transmission matrix. Various impedances 

combination are employed to obtain a valid oscillation 

parameters for each network. The impedances discussed 

throughout the paper are combinations of series or parallel 

connection of fractional order capacitors with resistors. 

This paper is organized as follows; section 2 presents the 

configuration of the two-port network oscillator. Section 3 

discusses the design of oscillator based on a network with one 

element in its transmission matrix with numerical discussions. 

Section 4 presents Spice simulations for some cases, finally 

section 5 concludes the work. 

 

2. Oscillator Structure 
 

The suggested oscillator is depicted in Fig.1 consists of a 

general two port network with input impedance   , output 

impedance    and a feedback impedance   . From Fig.1, 

           , so    can be written as: 
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With the transmission matrix in (1) and the above equation: 
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Also,            , so    can be written as: 

 

   
  
  
   (

 

  
 
 

  
)                                         ( ) 

86



Two -Port

Network1
Z 2

Z

1
Z 3
Z





2
V





1
V

1
I

2
I

2Z
I

1Z
I

3Z
I

 
 

Fig. 1. Oscillator structure. 
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Fig. 2. Oscillator parameters for VCVS versus    with (a)   

 ,and(b)         

 

Table 1. Single element networks 
 

Network Transmission matrix Characteristic equation 

VCVS *
   
  

+ 
       (    )    

   

VCCS *
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CCVS [
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CCCS [
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With the transmission matrix in (1) and the above equation; 

another relation between (    ⁄ ) can be written as follows: 
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By eliminating (    ⁄ )  the characteristic equation of this 

oscillator is obtained in terms on the transmission matrix 

elements and the three impedances.  
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3. Single element network  
 

There is lots of linear controlled networks can be arranged in 

a matrix form such as the voltage- controlled voltage source 

(VCVS), the voltage-controlled current source (VCCS), the 

current-controlled voltage source (CCVS) and the current 

controlled current source (CCCS). The transmission matrix of 

all these networks contains only one element as illustrated in 

Table 1. It also shows the oscillator’s characteristic equation 

when each network is used where it is independent of some 

impedances which will be considered as open circuit (O C) as 

follows: 

 For the VCVS, the output impedance  . 

 For the CCCS, the input impedance   . 

 For the CCVS, both input and output impedances 

   &    . 

Obviously from Table 1, The characteristic equation of The 

CCCS is similar to the VCVS replacing    by    with      . 

The choice of impedances depends on the characteristic 

equation of each network to obtain valid oscillations. 

The theory of fractional order oscillator was presented in [11] 

and it is applied throughout this paper. Table 2 summarizes the 

possible impedance combinations, characteristic equation, 

oscillation frequency and condition for each network. 

For the VCVS (or CCCS), only the parallel combination 

achieves oscillations. The oscillation frequency is completely 

controlled by the fractional order parameters       and the 

voltage gain    which must be less than one. The oscillation 

frequency is independent of the resistors    &    which control 

the oscillation condition. The cases where      are not a 

working oscillator which include the integer case. Figure 2 

shows the oscillation parameters versus   for different    and 

with    open circuit where it is clear that increasing    leads to 

increase in the obtained frequency range. There exists inverse 

relation between the frequency of oscillation and    . When 

mixing integer order capacitors     with different fractional 

order ones, higher frequency range is obtained as deduced from 

Fig.2. 

For the VCCS, the three impedances exist which allow six 

possible combinations to achieve oscillations. Without any loss 

of generality, interchanging    &    would lead to identical 

response so only four combinations are studied in Table 2.  The 

cases where      are not valid oscillators including the integer 

case for the four combinations. For combination 1, if     
     (OC) and for combination 2 if         (short 

circuit (SC)), the two cases will be equivalent. Figure 3 shows 

the surfaces of oscillation frequency and condition for these 

cases versus      plane where the oscillation frequency range 

reaches tens K rad/sec. Figure 4 illustrates the effect of the 

added resistance for combinations 1 & 2 on the oscillation 

parameters versus    at    . For combination 1, increasing the 

parallel resistance, increases the frequency range .However, for 

combination 2, decreasing the series resistance increases the 

obtained frequency range.  

From Table 2, if pure fractional capacitors were used for 

combinations 3 & 4, there exist a condition on the fractional 

order parameters to have a working condition of oscillation or a 

negative resistance is needed to obtain oscillations. The 

condition is        which contradict with the oscillation 

frequency equation. This can be overcome through the negative 

implementation of VCCS. Figure 5 shows the oscillation 

parameters surfaces versus     plane where a very large 
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resistance is needed to achieve small values of frequency 

reaches hundreds rad/sec. 

 

 

 

 

Table 2. Impedance combinations, characteristic equation and oscillation parameters for single element network  
 

 # 
Impedances Characteristic 

equation 
  Condition 
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Fig. 3. Oscillator parameters surfaces for VCCS combination 1 

& 2 with no resistances versus      plane. 

 

 
(a) 

 
(b) 

 

Fig. 4. Oscillation parameters for VCCS versus    for       

     (a) Combination 1, and (b) Combination 2. 

 

 
 

Fig. 5. Oscillator parameters  surfaces for VCCS combination 3 

& 4 with no resistances versus      plane. 

 

4. Simulation results 
 

In this section, Simulation of some cases are presented to 

verify the reliability of the proposed oscillators. Equal   design 

is chosen to be simulated over all cases with       
         . The fractional order capacitor is simulated as shown 

in Fig. 6. It shows the approximation of fractional order 

capacitor with order 0.5 [14] and with any other order [15]. The 

number of branches depends on the order of the capacitor [15]. 

For the VCCS, combination 1 & 2 with         and 

       , when           the frequency of oscillation 

is calculated to be 32Hz and        . The output waveforms 

for this oscillator are shown in Fig. 7(a). When           

the frequency of oscillation is calculated to be 88Hz and 

     . The output waveforms for this oscillator are shown in 

Fig. 7(b).    
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Fig. 6. Approximation the capacitor with (a) order 0.5, and (b) 

general order 

 

 
(a) 

 
(b) 

 

Fig. 7. Spice simulations with VCCS for     (a)      , 

and(b)       

 

5. Conclusions 
 

In this paper, a study of fractional order oscillator based on 

two port network with a single element in its transmission 

matrix was presented. Four devices were studied as a two port 

network. Different impedance combinations were investigated to 

achieve oscillations. The oscillation frequency and condition 

were investigated for each combination. The fractional order 

parameter adds extra degree of freedom in the design which 

increases the design flexibility. Numerical and circuit simulation 

results for some cases were illustrated. 
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