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Abstract— A Wireless Sensor Network (WSN) is a wireless 

network consisting of locationally distributed autonomic devices 

using sensors to track physical or environmental conditions. 

Localization, also sometimes referred to as self-positioning, 

provides sensors with the capability to know their own position 

in relative or absolute coordinates in the field of their 

deployment. Time Difference of Arrival (TDOA) is a widely-

used method for localization. In TDOA method, the estimation 

of the target node is based on calculating the intersection of two 

hyperbolas. This paper proposes an effective Time Difference of 

Arrival (TDOA) based localization algorithm in different types 

of distributed sensor networks. TDOA is formulated using the 

parametric equations of the hyperbolas whose intersections are 

candidate locations for the nodes to be localized. The algorithm 

is guaranteed to find all possible relevant solutions, even when 

implemented on a computational node with limited capability. 

Monte-Carlo simulations were used to assess the performance 

for the algorithm. Uniform, Weibull, Birnbaum-Saunders and 

Generalized Pareto distributed networks were used for 

localization using Parametric Equation-based Hyperbolic 

Localization algorithm and the localization performance of the 

networks are evaluated and compared using MATLAB 

simulations. 

Index Terms— Localization, Parametric-Hyperbolic Based 

Algorithm, Statistical Distributions, Time Difference of Arrival, 

Wireless Sensor Networks.  

I. INTRODUCTION  

Over the last two decades, WSNs have received 
increasing interest by virtue of their potential application to a 
number of various areas such as military applications, target 
tracking, space exploration, environmental monitoring and 
health care [1]. A typical WSN has constitutively two 
functions such as collecting information from each sensor 
node and processing this information according to the aim of 
its intended use [2]. 

The problem of localization in the WSNs has been a topic 
of great interest recently. Wireless sensor localization 
techniques generally use localization parameters such as 
position information of anchor nodes which are sensors with 
known location information, distance between sensors, time 
of arrival, time difference of arrival, angle of arrival and 
connectivity [3]. 

Localization algorithms can be examined in three main 
categories; range-free and range-based algorithms, 
centralized and distributed algorithms, and anchor-free and 
anchor based algorithms [4]. In applications where central 
networks are used, all nodes in the network receive direction 
information from a single device. Distributed algorithms are 
used in applications where the preservation and monitoring 
of some features such as memory, number of connections, 
energy saving, efficiency are important or the information 
processing center is insufficient [5]. Distance based 
algorithms use inter-node distance or angle values to estimate 
the exact positions of the nodes. In range-free algorithms, no 
special hardware is used to estimate the inter-node distances 
[6]. Anchor-based algorithms assume that some nodes know 
their location using any manual configuration or another 
localization system. In anchor-free algorithms, local distance 
information is used to estimate the node coordinates if no 
node position is preconfigured [7]. 

The TDOA localization technique is a widely used 
localization technique in which the estimated location of the 
target node is determined by differences in arrival times 
between the signals coming from the transmitter and the 
signals coming from the nodes in the receiver set [8]. In [1], 
the authors aimed to solve some problems caused by the 
centralized approach, by distributing the issue of localization 
among all the agents in the network. Each agent in the 
network operates its own Extended Kalman Filter (EKF) for 
estimating the target’s position, while a neighbor-based 
averaging method is proposed to ease the concurrence of 
agents’ estimates. In [9], the problem of the passive blind 
estimation of time-delays for uncorrelated interference source 
signals is examined. The data mixtures received by the 
sensors are modeled as unknown linear combinations of 
delayed states of the interference signal at different levels and 
of the communication signal. Blind source segregation and 
secondary interference signal subtraction are both presented 
in the proposed method. In [10],  authors proposed an 
approach that applies exact direct methods, and resolves the 
ambiguous pairs of solutions without a priori information. Its 
Divide-and-Conquer (D&C) structure and the high 
computational yieldance of the available exact direct methods 
makes it a very good candidate for fast parallel computing in 
distributed sensor networks. Thier method is proposed for the 
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TDOA scheme, but can also be applied to Time of Arrival 
(TOA), or any other range-based scheme.  

Statistical analysis is used in almost all disciplines 
because statistical analysis is a component of data analytics. 
For example, in [11], a method for evaluating the efficiency 
level of a Decision Making Units (DMU) when it is in a 
negatory situation as well as estimating the efficiency using 
uniform distribution is demonstrated. For example, Weibull 
Statistical Distribution is a prevalent method for specifying 
wind energy potential and examining wind speed 
measurements. Weibull probability density function is useful 
for estimating wind energy potential, wind intensity, wind 
speed. [12]. 

In literature, statistical analysis related to localization 
problem in WSNs are available in many studies. In [13], 
equipped with moments, OFR distribution is obtained by 
using Gaussian and Gamma distributions and moment 
mapping method. When Gaussian and Gamma distributions 
are compared for their suitability to the OFR distribution, it is 
seen that the Gamma distribution is more appropriate than the 
Gaussian distribution. Tsai et al. [14] performed statistical 
analysis of four wireless channels in different aspects, taking 
advantage of the power data from a transmission experiment 
in which the Binary Phase Shift Keying (BPSK) technique 
was used. They used Log normal,  Rice, Nakagami, Weibull 
and Rayleigh distributions in their study. 

In this paper, Uniform, Weibull, Birnbaum-Saunders and 

Generalized Pareto distributed networks were used for 

localization and the localization performance of the networks 

were evaluated for different constant ranges and different 

anchor percentages using MATLAB simulations. 

II. TIME DIFFERENCE OF ARRIVAL BASED 

LOCALIZATION  

The range differences to the three nodes or beacons (also 
frequently called anchor nodes) were used for estimation of 
the positions.  A hyperbola is defined as the locus of points 

where the difference of the distances �̂�1, �̂�2 to the  two points 

A1 and A2, called foci.  Given the measurement �̂�1 − �̂�2, the 
target node is known to belong to one of the two hyperbolic 

branches. In fact, if �̂�1 < �̂�2, then the target belongs to the 
branch closer to A1 as shown in Fig.1.  

 

 
 

Fig.1.  Case �̂�1 < �̂�2 

  The parametric equation of the above hyperbola is given 

by      
                           

𝑥 = 𝑎𝑠𝑒𝑐𝑡
𝑦 = 𝑏𝑡𝑎𝑛𝑡                                     (2) 

where −
𝜋

2
< 𝑡 <

𝜋

2
 . Moreover, 

𝑦

𝑥
=
𝑏tan𝑡

𝑎sec𝑡 𝑡→𝜋 2⁄
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𝑏

𝑎
                             (3)                                                                                       

The parametric equation of a translated and rotated  
hyperbola is given by 

 

[
𝑥
𝑦] = [

𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

]
⏟          
𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥

[
𝑎sec𝑡
𝑏tan𝑡

] + [
ℎ
𝑘
]               (4) 

Here, the hyperbola is rotated clockwise by angle 𝜃 and the 

center of the hyperbola is then shifted to[
ℎ
𝑘
]. A mathematical 

model is developed for the hyperbolic position estimator based 
on parametric equations.  
The equation of the rotated first hyperbola is 

[
𝑥1
𝑦1
] = [

cos𝜃1 −sin𝜃1
sin𝜃1 cos𝜃1

] [
𝑎1sec𝑡1
𝑏1tan𝑡1

] + [
ℎ1
𝑘1
]             (6) 

The equation of the rotated second hyperbola is 

[
𝑥2
𝑦2
] = [

cos𝜃2 −sin𝜃2
sin𝜃2 cos𝜃2

] [
𝑎2sec𝑡2
𝑏2tan𝑡2

] + [
ℎ2
𝑘2
]            (7) 

where 𝑡1, 𝑡2 ∈ (−𝜋 2, 𝜋 2⁄⁄ ),  and  𝜃1 and 𝜃2 are the 
orientation angles of the first and second hyperbolas 
respectively.  

Equating 𝑥1(𝑡1) = 𝑥2(𝑡2) leads to 

0 = 𝑎1 cos 𝜃1 sec 𝑡1 − 𝑏1 sin 𝜃1 tan 𝑡1 + ℎ1
         −𝑎2 cos 𝜃2 sec 𝑡2 + 𝑏2 sin 𝜃2 tan 𝑡2 −ℎ2

        (8) 

Equating 𝑦1(𝑡1) = 𝑦2(𝑡2) leads to 

0 = 𝑎1 sin 𝜃1 sec 𝑡1 + 𝑏1 cos 𝜃1 tan 𝑡1 + 𝑘1
         −𝑎2 sin 𝜃2 sec 𝑡2 − 𝑏2 cos 𝜃2 tan 𝑡2 −𝑘2

        (9) 

Multiplying (8) with cos 𝜃1 and (9) with sin 𝜃1 and adding 
the results leads to 

𝑎1 sec 𝑡1 = 𝑒1 + 𝑒2 sec 𝑡2 + 𝑒3 tan 𝑡2         (10) 

where 

    𝑒1 = (ℎ1 − ℎ2) cos 𝜃1 + (𝑘1 − 𝑘2) sin 𝜃1
   𝑒2 = −𝑎2(cos 𝜃1 cos 𝜃2 + sin 𝜃1 sin 𝜃2)
𝑒3 = 𝑏2(cos 𝜃1 sin 𝜃2 + sin 𝜃1 cos 𝜃2)

       (11) 

Similarly multiplying (8) with sin 𝜃1 and (9) with cos 𝜃1 and 
adding the results leads to 
 

𝑏1 tan 𝑡1 = 𝑓1 + 𝑓2 sec 𝑡2 + 𝑓3 tan 𝑡2          (12) 

where 

    𝑓1 = (ℎ1 − ℎ2) sin 𝜃1 − (𝑘1 − 𝑘2) sin 𝜃1
   𝑓2 = −𝑎2(sin 𝜃1 cos 𝜃2 − cos 𝜃1 sin 𝜃2)

𝑓3 = 𝑏2(sin 𝜃1 sin 𝜃2 + cos 𝜃1 cos 𝜃2)
         (13) 
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There are two unknowns t1 and t2 in equations (10) and (12). 
Note that both t1 and t2 must belong to [-π/2, π/2]. To eliminate 
ambiguities due to multivaluedness, one can use 

    𝑡1 = tan
−1 (

𝑓1+𝑓2 sec 𝑡2+𝑓3tan𝑡2

𝑏1
)

   𝐹 = sec𝑡1 − sec (
𝑒1+𝑒2 sec 𝑡2+𝑒3tan𝑡2

−𝑎1
)

𝑡𝑖𝑛𝑡 = 𝑡1 (𝑓𝑖𝑛𝑑 (𝑑𝑖𝑓𝑓(𝑠𝑖𝑔𝑛(𝐹))))

         (14) 

where the values of tint  are the required intersection values of 

t1 (-π/2, π/2) . These values are substituted into (6) and (7). 
These (x1, y1) and (x2, y2) will result on the same points as the 
intersections of both hyperbolas. 

III. FIELDS IN DIFFERENT DISTRIBUTIONS  

A. Uniform Distribution 

This distribution is characterized by a density function 

that is “flat,” and thus the probability is uniform in a closed 

interval say [A, B]. The density function of the continuous 

uniform random variable x on the interval [A, B] is  

𝑓(𝑥) = {

1

𝐵−𝐴
   , 𝐴 ≤ 𝑥 ≤ 𝐵

0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

                           (15) 

The density function creates a rectangle with base B−A 

and height 1/B-A. As a result, the uniform distribution is 

generally called the rectangular distribution [15]. 

Fig. 2 shows the Uniform distribution of 100 nodes. A 

heterogeneous node network containing a mix of anchor 

nodes that have the capabilities of ascertaining their own 

locations and the target nodes that are non-position-aware is 

generated as shown in Fig. 2. Blue circle nodes and red square 

nodes represent position-aware and non-position-aware 

nodes, respectively.  

 
Fig. 2.  Uniform distribution of 100 nodes 

B. Weibull Distribution 

Fig. 3 shows Weibull distribution of 100 nodes. This 
distribution has two parameters which α > 0 is the scale 
parameter of the distribution and β> 0 is the shape parameter 
[15]. α and β are chosen as 1 and 0.12 respectively for this 
simulation.  

 

 

Fig. 3.  Weibull distribution of 100 nodes 

C. Birnbaum-Saunders Distribution 

The Birnbaum-Saunders (BS) distribution is defined in 

terms of the normal distribution by means of the random 

variate 

𝑇 = 𝛽 [
𝛼𝑍

2
+ √(

𝛼𝑍

2
)
2

+ 1     ]

2

                       (16) 

where  

𝑍 = 1/𝛼 (√
𝑇

𝛽
− √

𝛽

𝑇
)~𝑁(0,1) 

α > 0 is the shape parameter and β > 0 is the scale 

parameter [16]. Fig. 4 shows BS distribution of 100 nodes. α 

and β are chosen as 0.35 and 0.35 respectively for this 

simulation.

 

Fig. 4.  BS distribution of 100 nodes 

D. Generalized-Pareto Distribution 

The Generalized Pareto (GP) distribution introduced by 



𝐹(𝑞) = 1 − 𝑒−
𝑞−𝑞0

𝛼 ,     𝜅 = 0                                (17) 

𝐹(𝑞) = 1 − (1 − 𝜅
𝑞−𝑞0

𝛼
)
1/𝜅

,     𝜅 ≠ 0               (18) 

where α is the scale parameter,  is the shape parameter, and 

q0 is the threshold [17]. 

Fig. 5 shows GP distribution of 100 nodes. Three 

parameters of Pareto function, tail index (shape, 𝜅), scale 

parameter 𝛼 and threshold (location) parameter 𝑞0, are 

chosen as 0.08, 0.08 and 0.08 respectively. When 𝜅>0 and 

theta is equal to 𝛼/𝜅 the Generalized Pareto is equivalent to 

the Pareto distribution. 

 
Fig. 5.  Generalized Pareto distribution of 100 nodes 

IV. PARAMETRIC-EQUATION BASED TDOA 

LOCALIZATION ALGORITHM FOR DIFFERENT DISTRIBUTED 

FIELDS  

In this section, we provide simulations which confirm that 
the parametric-equation based TDOA localization algorithm  
inreases the percentage of nodes that can compute their 
position in a sensor network. For the simplification of the 
complexity of the environment, following assumptions were 
made throughtout this paper (1) all nodes have identical 
sensing ability, (2) there are no obstacles in the environment, 
(3) node placement in the environment is completely random 
and (4) all the nodes have similar capabilities. The location 
unaware sensor nodes (nonanchor) are assumed to be static 
and unaware of their location. Each non-anchor node can 
detect which anchor-nodes lie within its communication 
range. If there are three anchor-nodes in this set of 
neighboring nodes the nonanchor node is localised via the 
parametric-equation based  TDOA algorithm. Localization 
information increases iteratively as newly settled nodes 
become reference nodes. When a node becomes a reference, 
it can assist other nodes in computing their positions as well. 

The 100 x 100 unit an area of simulation field was created 
using Uniform, Weibull, Birnbaum-Saunders and 
Generalized-Pareto distributions.  Anchor nodes have no 
difference from other network nodes except knowing their 
locations as a priori. For all of the different distributed fields, 
the anchor percentage is varied from 10% to 35% of the total 
nodes in the network. The communication ranges are kept 

constant at 8% and 15% of the field dimension. The 
communication range of sensor nodes are kept constant at 8% 
and 15% of the field dimension and assumed not to change 
drastically during the entire localization algorithm runtime.  

Many localization algorithms are too sensitive to node 
density. Algorithms that depend on anchor nodes fail when 
anchor node density is not high enough in a particular region. 
For this reason the density of nodes is increased from 50 nodes 
to 400 nodes in simulations.  The increase of the sensor density 
results in more anchor nodes to estimate a node position. On 
the other hand, high node density can sometimes be expensive.  

In Fig. 6, Fig. 7, Fig. 8 and Fig. 9, the localization 
performances of proposed algorithm are shown for uniform, 
weibull, BS and GP distributed fields. The communication 
range is kept constant at 8% of the environment. As can be 
seen from these figures, the best performance for the 8% 
anchor node condition is obtained in the field generated by the 
GP distribution. The simulation results show that for GP 
distributed field, the localized nodes reach around 95% with 
35% anchor nodes and the density at 370 nodes. The details 
are visible in the graphs. 

 
 

 
Fig. 6.  Localization for Uniform Dist. at communication range 8% 

 
 

 

 
Fig. 7.  Localization for Weibull Dist. at communication range 8% 

 



 
Fig. 8.  Localization for BS Dist. at communication range 8% 
 

.  
Fig. 9.  Localization for GP Dist. at communication range 8% 

 

In Fig. 10, Fig. 11, Fig. 12 and Fig. 13, the localization 
performances of proposed algorithm are shown for uniform, 
weibull, BS and GP distributed fields. The communication 
range is kept constant at 15% of the environment. As can be 
seen from these figures, the best performance for the 15% 
anchor node condition is obtained in the field generated by the 
GP distribution. It is observed that for GP distributed fields, 
after about 250 nodes, about 95% of the nodes in the network 
can be found. The details are visible in the graphs. 

 

 
Fig. 10.  Localization for Uniform Dist. at communication range 15% 

 
Fig. 11.  Localization for Weibull Dist. at communication range 15% 

 
 

 
Fig. 12.  Localization for BS Dist. at communication range 15% 
 
 

 
Fig. 13.  Localization for GP Dist. at communication range 15% 
 

V. CONCLUSION 

This paper presents an incremental two-dimensional 
localization algorithm bases on Parametric-equation based 
hyperbolic in wireless sensor networks. This algorithm was 
tested on an environment created with Uniform, Weibull, BS, 
and GP distributions. With the increasing number of nodes 
and communication range of the field dimension, the 



localization performance of proposed algorithm generally 
increases for all distributions. The results for localization 
performance of distributions can be summarized in Table 1.  

TABLE I.  LOCALIZATION FOR ALL DISTRIBUTIONS AT COMMUNICATION 

RANGE 8% AND 15% OF THE FIELD DIMENSION 

Distributions 
Num. of 

Nodes 

Anchor 

percentage 

Perc.  of  

nonanc. 

Localized 

(8%) 

Perc.  of  

nonanc. 

Localized 

(15%) 

Uniform 

50 
10% 0 0.75 

35% 0.5 15 

400 
10% 30 100 

35% 85 100 

Weibull 

50 
10% 10 51 

35% 92 96 

400 
10% 40 78 

35% 92 96 

Birnbaum-

Saunders 

50 
10% 3.5 52 

35% 32.5 84 

400 
10% 94 99 

35% 94 99 

 

Generalized-

Pareto 

50 
10% 23 66 

35% 60 84 

400 
10% 94 98 

35% 95 98 

 

From the table, it can be said that for communication 

range 8% of field dimension and for both 10% and 35% 

anchor percentage. the best result is obtained from GP 

distributed field. But for communication range 15% of field 

dimension, It can be said that the performance of other 

distributions is very close to the GP distribution. The sensors 

that detect the movements of the objects are not considered in 

this paper. They will be addressed in our future work.  
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