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Abstract 
 

This work proposes a methodology for determining the 
state-of-health (SOH) of rechargeable batteries. The 
proposed method uses a parametric approach which is based 
on a generic electrical circuit model for rechargeable 
batteries. Battery parameters of the model are identified by 
an algorithm based on extended Kalman filtering (EKF). 
Estimated battery parameters are used as classification 
features in quadratic discriminant analysis. Classification 
performance of the proposed method is investigated via a 
method using the concept of Bhattacharyya distance.  

 
1. Introduction 

 
As the usage of modern portable electronic devices increases, 

the measurement of the remaining battery capacity becomes 
important. The knowledge of the battery state-of-charge (SOC) 
provides the battery to be kept within safety operating limits. It 
is important to avoid over-charge or deep-discharge which both 
causes a decrease of the battery state-of-health (SOH). 

To estimate the SOC, a battery model should be used. There 
are various types of battery models in the literature. While some 
of them are for specific battery types, some of them are generic 
models. Some battery models have a complex structure with a 
large number of parameters such as electrochemical models [1, 
2]. Some models have the capability of the analytical insight like 
electrical circuit models [3-12]. In electrical circuit models, 
battery parameters are defined as circuit parameters to provide 
the understanding of battery behavior. In mathematical models, 
battery parameters are defined as variables which are obtained 
from battery tests [13]. In this work, a generic electrical circuit 
model, which is suitable for on-line identification of 
rechargeable batteries, will be used [14].  

Several methods for the estimation of battery SOC are 
proposed in the literature.  These are discharge tests, ampere-
hour counting, open-circuit method [3, 6], impedance 
measurement methods [15, 16], Kalman-filtering based methods 
[1][3][10-12][13], and methods which use manufacturers’ data 
[17-20]. Here, we use a Kalman-filtering based algorithm to 
estimate the battery SOC. Indeed, the SOC estimation approach 
we had proposed in [14] is a joint estimation method which 
simultaneously estimates the battery parameters. 

To determine the battery SOH, we propose a quadratic 
discriminant classification method. We use the battery 
parameters obtained via the Kalman-filtering based joint 
estimation as a feature vector for classification. In order to 
estimate battery SOH, we define unused, lightly used and 
heavily used battery groups. These classes are defined by 
statistical characterization of battery parameters obtained from 

unused, lightly used and heavily used batteries. By this 
approach, we transformed the battery state-of-health estimation 
problem into a classification problem. Quadratic discriminant 
analysis [21] is used as a classification algorithm. For each 
class, a quadratic discriminant function is calculated at the 
measured battery parameters. Classification is done by assigning 
the battery to the class at which the maximum value of the 
quadratic discriminant function is achieved. The proposed 
classification method is tested on NiMh batteries. Classification 
performances are analyzed by using an inequality based on the 
concept of Bhattacharyya distance [22]. 

Joint SOH and parameter estimation method used will be 
briefly discussed in part 2. Proposed classification approach for 
SOH estimation is explained and discussed with the 
experimental results in part 3. We end up with a short discussion 
of the results in part 4. 

 
2. Joint Battery SOC and Parameter Estimation  

 
2.1. The Rechargeable Battery Model 

 
In this work, a generic electrical circuit model [14] shown in 

Fig. 1 will be used. This model captures the basic structure and 
dynamics of rechargeable batteries and will be used as a generic 
model regardless of the type of battery. 

 
 

 
 

Fig. 1. Generic Rechargeable Battery Model 
 

Here, Vsoc is the voltage drop on the capacitor Csoc and will 
be assumed to take values between 0V and 1V. 0V will indicate 
that the battery is empty and 1V shows that the battery is 100% 
full. Voc represents the battery open-circuit voltage. Vb and Ib are 
the battery output voltage and load current respectively. Rb is the 
battery internal resistance and the Rd*Cb product is the time 
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constant of the battery voltage Vb when the battery is open-
circuited. Rsd is the self-discharge resistance. 

For this battery model, Vb and Ib are externally measureable 
and Vcb and Vsoc will be taken as state variables in order to 
estimate the battery SOC. The relation between the battery open 
circuit voltage (controlled source) and SOC is as shown in 
equation (1). 

 
 Voc = mVsoc+n     (1) 

 
Here, “m” and “n” are constants and depends on the battery 
type. “n” and “m+n” can be calculated from the open-circuit 
voltage Voc when the battery is empty and when the battery is 
100% full respectively.  

 
2.2. State Space Model 

 
The state space equations of the proposed battery model in this 
work are as follows: 
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Here, self-discharge resistance (Rsd) is assumed to be very large 
and will be ignored. 

This dynamic model is sufficient to estimate the battery SOC, 
provided battery parameters are known. Here, we add battery 
parameters Cb and Rb as new state variables, and obtain an 
augmented state space model for the joint estimation of SOC 
together with these parameters: 
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Here, Tcbrd is the time constant of the battery voltage Vb when 
the battery is open-circuited and equals to the product of Cb and 
Rd.   Tcbrd can be estimated via a simple open circuit test [14] 
and will be assumed to be known. Capacitance Csoc holding the 
electrical charge of battery is chosen according to the nominal 
capacity of the battery.  The output variable for the state space 
model is defined as the battery terminal voltage: 

 
     bb IxxVy 41 −==    (4) 
 

Kalman filter based algorithm is applied to the dynamic 
battery model whose input is the battery current (Ib) and the 
output is the battery terminal voltage. The first part of the 
Kalman filtering method [23, 24] is the time update. 
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Here, f denotes the dynamic of the state space model and P is 
the error covariance matrix. The second part of the Kalman 
filtering method is the measurement update. 
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Here, g denotes the output equation and K is the Kalman gain 
matrix. 

 

 
 

Fig. 2. The real (bold curve) and estimated (broken curve) 
values of the battery SOC 

 

 
 

Fig. 3. Battery SOC percent error and 3-sigma curves 
 

0 1 2 3 4
x 104

0.5

0.6

0.7

0.8

0.9

1

Number of Samples

V
so

c 
 ( 

V
 )

 

 

Vsoc(0)=1.0
Vsoc(0)=0.9

0 2000 4000 6000 8000 10000-10

-5

0

5

10

Number of Samples

±3
 S

ig
m

a

 

 

II-102



A simulation result for the estimation of the battery SOC is 
given in Fig. 2. As seen from the figure, even if the initial value 
of the SOC has an error of 10%, the battery model estimates the 
SOC without steady-state error. 3-sigma error graphic is shown 
in Fig. 3. 

Extensive simulation studies reported in [14] has shown that 
this dynamical model is observable, hence can be used reliably 
for the joint estimation of SOC and battery parameters in a 
Kalman filtering estimation framework. 

 
2.3. Experimental Study 

 
For experimental verification of the proposed methodology, 

sixteen 2100mAh NiMh batteries are purchased and used as test 
batteries to estimate the battery SOC and parameters.  

For each battery, we followed the following procedure 
identically. Batteries (coming partially charged from the out of   
package) are first discharged with a 0.2C discharge current until 
the terminal voltage reaches to the end voltage which is 1V. 
After a rest period, open-circuit terminal voltage is measured 
and found 1.25V for an empty battery. Then batteries are 
charged with 1C charge current until the battery terminal voltage 
is 15mV less than its maximum value during charging. Again 
after a rest period, open-circuit terminal voltage is measured and 
found 1.36V for a 100% full battery. 

 

 
 

Fig. 4. Measured and Estimated Battery Terminal Voltage, Vb 
 

 
 

Fig. 5. The estimated battery SOC 
 

In the second part of the test, batteries are discharged with 
0.5C discharge current. Kalman-based algorithm is applied to 
the data and the battery SOC and parameters are estimated. The 
measured and estimated battery terminal voltages are shown in 
Fig. 4. Here, the error between the measured and estimated 
battery terminal voltages is less than 0.2 %. This experimental 
result is the unique experimental verification of the joint SOC 
and parameters estimation framework because the battery 
terminal voltage is the only variable that can be measured 
externally. Hence, in Fig. 5 only the estimated value of the 
battery SOC is given. 

 
3. Battery State-of-Health Classification 

 
As the number of charge-discharge cycles of a battery is 

increased, battery gets older. Also improper and harsh usage 
during charge or discharge causes battery aging. Typically 
battery state-of-health (SOH) is related to the real (not the 
nominal) capacity the battery. Here, we propose a classification 
methodology in order to determine the SOH instead of 
predicting a variable related to the SOH.  Our classification 
methodology enables us to classify a given battery into one of 
the previously defined groups based on the health status of the 
battery. In other words, our SOH variable does take only 
discrete values, instead of continuous values. 

 
3.1. Defining SOH Classes 

 
In this study, three SOH classes are defined. These are called 

Group 0, Group 1, Group 2 and they associate with unused 
(new), lightly used, and heavily used battery classes 
respectively. Having a robust parameter determination method 
at hand, we use a parametric approach to define these SOH 
classes. In order to identify a battery, we used the three battery 
parameters:  the capacitor Cb, the resistor Rb, and Tcbrd. In other 
words, we use a three dimensional feature vector for the 
parametric classification: 

 
                              x = [Cb, Rb, Tcbrd]    (7) 

 
It should be noted that, these three parameters uniquely 

define a rechargeable battery provided its type and nominal 
capacity are given.  

In order to define Group 0, three battery parameters for the 
sixteen unused 2100mAh NiMh batteries are determined via the 
joint estimation algorithm. At the second step, eight of the 
sixteen batteries are similarly charged and discharged harshly 
several times. Then for these batteries, battery parameters are 
estimated. This new data forms the Group 1 which we treat as 
the “lightly used” batteries.  At the third step, this aging 
procedure identically applied to the batteries in Group 1 ones 
again and the new set is called Group 2 which can be interpreted 
as “heavily used” batteries.  
3.2. Quadratic Discriminant Analysis 

 
Quadratic discriminant analysis [21] is a Bayesian 

classification approach in which the discriminant function is 
chosen as a quadratic function of the feature vector. Quadratic 
discriminant function is calculated as: 

 

    kkk
T

kkk xPxPxd πμμ log)()(
2
1log

2
1)( 1 +−−−−= −   (8)   

 

0 1000 2000 3000 4000

1.15

1.2

1.25

1.3

1.35

Time (s)

B
at

te
ry

 T
er

m
in

al
 V

ol
ta

ge
, V

b 
(V

)

 

 

Vb-Measured
Vb-Estimated

0 1000 2000 3000 40000.5

0.6

0.7

0.8

0.9

1

Time (s)

V
so

c 
(V

)

II-103



for each class, where k is the class index. Here, Pk and �k are the 
covariance matrix and the mean of the kth group respectively. 	k 
is the a priori probability of class k. 

Classification is done by calculating each quadratic 
discriminant function at the measured feature vector (x), and 
assigning the measurement to the group at which the maximum 
is achieved: 

 
              )))(max(arg()(ˆ xdxd k

k
=     (9)  

 
In our experiment, Group 0 represents the unused batteries 

and it has sixteen members. Group 1 is the group of ‘lightly used 
batteries’ and it has eight members. Group 2 is the ‘heavily used 
battery’ group and it has also eight members.  

 
Table 1. Quadratic discriminant values of battery parameter sets 

 

Battery 
name 

Discrmt. at 
Group 0 

Discrmt. at 
Group 1 

Discrmt. at 
Group 2 

01Group0 -4.02 -10.09 -9.30 
02Group0 -2.13 -7.73 -8.83 
03Group0 -3.26 -10.29 -9.84 
04Group0 -2.25 -9.64 -9.51 
05Group0 -2.44 -8.68 -9.07 
06Group0 -1.70 -5.13 -8.43 
07Group0 -4.12 -4.68 -8.39 
08Group0 -1.70 -5.38 -8.50 
09Group0 -2.36 -4.90 -8.29 
10Group0 -4.53 -18.07 -10.21 
11Group0 -2.27 -4.74 -8.43 
12Group0 -3.63 -8.65 -8.99 
13Group0 -1.45 -7.52 -9.02 
14Group0 -2.86 -9.36 -9.46 
15Group0 -1.85 -6.15 -8.76 
16Group0 -1.70 -6.90 -8.71 
01Group1 -102.88 -6.16 -8.58 
02Group1 -46.37 -4.39 -7.88 
03Group1 -154.37 -6.01 -7.41 
04Group1 -3.60 -4.85 -8.43 
05Group1 -4.25 -4.78 -8.22 
06Group1 -9.09 -6.39 -7.82 
07Group1 -6.94 -4.56 -8.37 
08Group1 -7.82 -4.23 -7.93 
01Group2 -1259.37 -49.45 -7.43 
02Group2 -1082.42 -27.23 -8.01 
03Group2 -2497.95 -84.95 -8.39 
04Group2 -265.45 -54.17 -8.75 
05Group2 -17.31 -10.06 -9.13 
06Group2 -54.25 -18.48 -8.99 
07Group2 -671.58 -20.14 -7.25 
08Group2 -104.99 -5.96 -7.85 

 
Quadratic discriminant functions of these three SOH classes 

are calculated at each of the 32 different parameter sets. These 
values are given in Table 1. 

Based on Table 1, we applied three different classification 
tests for the batteries. These are tests to discriminate between 
unused vs. lightly used, between unused vs. heavily used, and 
between lightly used vs. heavily used batteries. Results of these 
tests are given in Table 2. 

 

Table 2. Classification test results 
 

Test Number of 
Test Cases 

Number of  
Correct Classification 

Class. Error 
(%) 

0 vs. 1 24 22 8.3 
0 vs. 2 24 24 0.0 
1 vs. 2 16 15 6.3 

 
As seen from the Table 2; we observe that while we 

discriminate between unused vs. heavily used batteries without 
any error, there are small classification errors associated with 
other tests. Indeed in any classification paradigm, at which the 
algorithm depends on the statistical characterization of the 
classes, such classification errors are unavoidable. The 
classification performance of the proposed method is discussed 
in the next section. 
 
3.3. Limits of Classification Performance  

 
Bhattacharyya distance is a measure to determine the 

similarity of two probability distributions. For multivariate 
Gaussian distributions Bhattacharyya distance is defined as 
follows: 
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Here, Pk and �k are the covariance matrices and the means of the 
classes respectively. The probability of classification error (Perr) 
of any classification algorithm is bounded by the statistical 
similarity of the classes. As shown in [22], the probability of 
classification error (Perr) is bounded as: 

 

                               B
err

B ePe −− ≤≤
2
1

2
1 2    (12)   

 
From this inequality, it is clear that there will be theoretical 

limits of performance in any classification algorithm. If the 
classification error of a classification algorithm is between these 
bounds, then there will be no need for a search for a better 
algorithm and we can call the algorithm as ‘sufficient’.  If the 
error performance of an algorithm approaches the upper bound 
from above, we can call the performance as ‘reasonable’. A new 
method might be sought if the error probability is far above from 
the upper bound. 

Bhattacharyya distances between SOH classes we have 
defined, theoretical upper bounds of the maximum classification 
errors and the classification errors of the quadratic classifier we 
employed are given in Table 3. 

 
Table3.Comparison of classification error with theoretical limits 

 

Test Bhattacharyya
Distance 

Max. Theoretical 
Class. Error (%) 

Class. Error  
(%) 

0 vs. 1 1.43 12.0 8.3 
0 vs. 2 2.52   4.0 0.0 
1 vs. 2 1.18 15.4 6.3 
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As seen from the Table 3, the classification performance of 
the quadratic classifier proposed can be interpreted as 
‘sufficient’.  
 

4. Conclusions 
 

This paper presents a methodology for battery SOH 
estimation. The methodology depends on identification of 
battery parameters as a member of previously defined SOH 
classes. Classification algorithm uses three battery parameters as 
the feature vector and employs quadratic discriminant analysis. 
We also propose a robust method for the identification of battery 
parameters via a Kalman-based approach. Based on a sound 
theoretical framework, we also showed that SOH classification 
performance is ‘sufficient’. 
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