
 Abstract- Electric utilities are concern about the impacts of 
uncoordinated plug-in electric vehicle (PEV) charging on smart 
grids (SGs) particularly during the peak load periods. This paper 
implements an online coordinated charging genetic algorithm 
(OL-CC-GA) for PEVs in SG that can also perform delayed (e.g., 
partial-overnight or full-overnight) vehicle charging by reducing 
the distribution transformer loading. The algorithm will 
minimize the total costs associated with energy generation and 
grid losses while also maximizing the number of PEVs that are 
being charged within each time interval (e.g., Δt=5min) 
considering distribution transformer loading and voltage 
regulation limits. Detailed simulations are performed for a 19-
node test feeder populated with PEVS using OL-CC-GA and 
compared with uncoordinated and delayed charging strategies.    

  Index Terms- Plug-in electric vehicles, online PEV 
coordination, GA, and smart grid.  

I.  INTRODUCTION 
Recent developments in smart grid (SG) along with the 
growing concerns about environment have increased the 
interests of public and electric utilities in plug-in electric 
vehicles (PEVs). It is well-known that uncoordinated PEV 
charging at high penetration levels will have detrimental 
impacts on the grid operation, losses and voltage profiles [1-
4]. The main impact of uncoordinated PEV charging is adding 
new time-variant loads that can increase the strains on the 
generation units, transmission and distribution systems [5-8] 
and can result in unacceptable voltage drops and lower power 
quality [2].  
To mitigate the negative impacts of random PEV charging on 
the power grid, it is critical to develop efficient charging 
coordination algorithms [9]. Some of the existing PEV 
charging algorithms are “offline” in the sense that they depend 
on information about the future status of the vehicles such as 
plug-in times and battery state of charges (SOCs) to decide the 
charging schedules. That is, the arrival time and charging 
demand of a PEV are assumed to be known or estimated prior 
to the arrival of the PEV. For example, Ma et al. [10] requires 
all PEVs to negotiate with the charging station about their 
charging schedules one day ahead. This coordination approach 
is not always practical as it depends on the accuracy and the 
availability of the predicted PEV information. Furthermore, in 
many practical applications, the PEV charging profile is 
revealed only after it arrives at the charging station or 
connects to the charging pole. In this paper, we are interested 
in developing an online charging algorithm that schedules 
PEV charging based on the information of the already 
plugged-in vehicles. 
There have been some recent studies on online PEV charging 
[11-13]. Gerding et al. [12] proposes an online auction 
protocol that vehicle owners use agents to bid for the charging 
opportunities. Masoum et al. [13] studies the coordinated 
charging of PEVs in residential distribution systems to reduce 

the power losses. He et al. [14] considers the scheduling of 
PEV charging and discharging in a small geographic area and 
proposes an online charging algorithm based on an assumption 
that no future PEV will arrive when a charging schedule is 
made. Refs [15] refer to the implementation of online PEV 
coordination algorithms for peak load shaving and cost 
minimization, respectively. Several other authors have 
proposed probabilistic models and charging coordination 
strategies considering day ahead or real time markets [16-18].  
In this paper a heuristic-based online coordinated charging 
genetic algorithm (OL-CC-GA) is implemented for charging 
of PEV batteries in SG that minimizes the cost associated with 
energy generation, grid losses while maximizing the number 
of charged PEVs, regulating node voltages and reducing 
distribution transformer loading. OL-CC-GA also considers 
changing of the distribution transformer loading for online and 
delayed (e.g., full-overnight and partial-overnight) PEV 
charging. Simulations are performed for a 19-node test feeder 
populated with PEVS using OL-CC-GA and compared with 
uncoordinated and delayed charging strategies. This method is 
also applicable for Large-scale penetration of PEVs [21]. 

II.  PROBLEM FORMULATION 
Online coordination of PEV charging is a real time 
optimization problem that requires formulation of a 
comprehensive objective function and a high speed 
optimization method to quickly capture best solutions. In this 
paper, the nonlinear objective function of Eq. 1 is defined for 
the PEV coordination problem to maximize the number of 
vehicles that are being charged (NPEV-ON) at each time slot 

min5=Δt while also minimizing the costs associated with 
energy generation (Fcost-gen) and grid losses (Fcost-loss(t)):    
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Eq. 1 is subject to the following voltage and demand 
(transformer loading) constraints: 
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In Eqs.1, min5t =Δ  is the time interval; KE=50$/MWh and 
Kt,G  are the costs per MWh of losses [13] and generation (Fig. 
1), respectively; k and n are the node number and total number 
of nodes; Rk,k+1 and yk,k+1 are the resistance and reactance of 
the line segment between nodes k and k+1, respectively;  Vmin  
and Vmax are the lower and upper voltage limits, respectively; 
Dmax(t) is the maximum demand level that would normally 
occur without any PEVs during a day. In this paper, Dmax(t) is 
the maximum load (maximum distribution transformer 
loading) for the selected DLC and DL is the daily load at mth 
time slot. The backward-forward sweep method is used to 
calculate load flows and bus voltages [19].  
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Fig. 1. Daily residential load curve (DLC) and short term market 
energy price (MEP) [13]. 
 

III.  PROPOSED ONLINE COORDINATED CHARGING GENETIC 
ALGORITHM (OL-CC-GA) FOR PEVS 

Genetic algorithms (GAs) are based on the principle of natural 
evolution that uses population genetics to capture high quality 
near optimal solutions [20, 22-23]. The variables are encoded 
into a binary string as a set of genes corresponding to 
chromosomes in biological systems. They use a set of points 
(chromosomes) as the initial conditions. A group of 
chromosomes are called a population. Each chromosome is a 
string of binary codes (genes) and may contain substrings. The 
quality of a string is evaluated using a fitness function which 
is usually derived from the objective function. During each 
generation (iterative procedure), a new set of strings with 
improved performance is generated using the reproduction, 
crossover and mutation GA operators. 
 
A.  Initial Population and Structure of Chromosomes 
In this paper, each chromosome contains the status of all PEVs 
where digit “1” corresponds to a PEV being charged while 
digit “0” indicates the charging has not been started or already 
finished. Fig. 2 shows the proposed structure of the GA 
chromosome. 
 
B.  GA Fitness Function  
The inverse algebraic product (Eq. 3) of the proposed penalty 
functions for voltage (Eqs. 4) and demand (Eq. 6) is used as 
the fitness function to combine the PEV coordination 
objective function (Eq. 1) and constraints (Eqs.2): 
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where FF(t), FV(t) and FD(t) are the objective function, bus 
voltage penalty function and demand (distribution transformer 
loading) penalty function at time t, respectively; αV1, αV2 and 
αD are the coefficients used to adjust the slopes of the penalty 
functions. The voltage and demand penalty functions are 
shown in Figs. 3(a) and 3(b), respectively.  
 

 
Fig. 2.  The proposed GA structure of chromosome. 
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C.  Binary Genetic Algorithm Operators 
Genetic operators usually consist of reproduction, crossover 
and mutation operators. They are stochastic transition rules 
applied to each chromosome during each generation procedure 
to generate a new improved population from an old one. 
Reproduction selects two parent strings from the population of 
strings on the basis of “roulette-wheel” mechanism, using their 
fitness values. This is to ensure that the expected number of 
times a string is selected is proportional to its fitness relative 
to the rest of the population. Therefore, strings with higher 
fitness values have a higher probability of contributing 
offspring.  
Crossover selects a random position (crossover point) in the 
string and swapping the characters either left or right of this 
point with another similarly partitioned string. In this paper 
the characters to the right of a crossover point are swapped.  
Mutation randomly modifies a string position by changing “0” 
to “1” or vice versa, with a small probability. This will prevent 
complete loss of genetic material through reproduction and 
crossover by ensuring that the probability of searching any 
region in the problem space is never zero.  

D.  Proposed GA at Each Time Slot (Δt) 
The proposed online coordinated charging genetic algorithm 
(OL-CC-GA) for PEVs in SG consists of eight steps: 
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Step 1: Input power system parameters, and optimization data. 
Read smart meters to check PEV entrances time and location 
for new connected PEVs.  
Step 2: Assume NCh_max and Nit_max. Set initial counters and 
parameter values (e.g., NCh= Nit=1). Use a random generator 
to initialize the position and velocity vectors. 
Step 3 (Fitness Process): 
Step 3A: Run power flow for each set of chromosome and 
compute the objective function (Eq.1). 
Step 3B: Compute the proposed penalty functions (Eq.3). 
Step 3C: If Nch≤Nch-max go to step 3A. 
Step 4 (Reproduction Process):  
Step 4A: Define total fitness as the product of all fitness values 
for all chromosomes. 
Step 4B: Run a tournament for selection process. Select a new 
combination of chromosomes. 
Step 5 (Crossover Process): 
Step 5A: Select a random number (R1) for mating two parent 
chromosomes. 
Step 5B:  
If R1 is less than the values of crossover, then combine the two 
parents, generate two offspring and go to Step 5D. 
Step 5C: Else, transfer the chromosome with no crossover. 
Step 5D: repeat steps 5A to 5D for all chromosomes. 
Step 6 (Mutation Process): 
Step 6A: Select a random number (R2) for mutation of one 
chromosome. 
Step 6B: if R2 is less than the values of mutation, then apply 
the mutation process and go to Step 6D. 
Step 6C: Else, transfer the chromosome with no mutation. 
Step 6D: Repeat Steps 6A to 6C for all chromosomes. 
Step 7 (Updating Population): 
 Replace the old population with the improved population 
generated by Steps 2 to 6. Check all chromosomes, if there is 
any chromosome with FL=1, FG=1, FV=1, FD=1 and FF>Fmax, 
set Fmax = FF and save it. Set Nit=Nit+1. 
Step 8 (Stopping Decisive Factor):  
If the maximum number of iterations is achieved, then start 
PEV charging and go to the next time slot. 

IV.  ONLINE AND DELAYED (PARTIAL-OVERNIGHT AND FULL- 
OVERNIGHT) PEV CHARGING USING OL-CC-GA 

The proposed OL-CC-GA of Section III is modified to allow 
for both online and delayed PEV coordination strategies: 

• Online Coordination- Vehicles are charged as soon as 
possible as they are being randomly plugged-in. This will 
result in high customer satisfaction at higher energy prices.  

• Delayed Full-Overnight Coordination- Vehicle charging is 
delayed and performed during early morning hours to 
reduce charging cost. This may result in less customer 
satisfaction as some PEVs may not be fully charged 
overnight for the next trip. 

• Delayed Partial-Overnight Coordination- Some PEVs (e.g., 
high priority vehicles) are charged quickly as soon as being 
plugged-in while the rest are postponed for overnight 
charging. 

To implement the above three charging strategies, the 
information of the randomly arriving PEVs including their 
plug-in time and locations are stored in the PEV-Queue Table. 

PEV charging will start and end at designated off-peak load 
hours while the maximum demand level is set according to 
total number of PEVs in the PEV-Queue Table.  
To allow for delayed PEV charging, the value of Dmax(t) in Eq. 
2B is modified. For delayed full-overnight charging Dmax(t) is 
a constant and is computed by trial and error; 
Dmax(t)=Dovrnight =31.1kW. For delayed partial-overnight 
charging, Dmax(t) is computed  using the following linear 
equations: 
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where the peak load for this test system is 43.73 kW. 

V.  SIMULATION RESULTS AND DISCUSSIONS 
The 19 bus 415V distribution test system of Fig. 4 populated 
with PEVs is used to evaluate the performance and accuracy 
of the proposed GA methods. System data including lines and 
residential loads’ parameters are available in [13].  
Simulations are performed on the 19- node test feeder of Fig. 
4 considering uncoordinated and coordinated PEV charging 
scenarios. Simulation results for a time slot of Δ t=5min are 
presented in Figs. 5-6 and Table I. 

 
Fig. 4. The 19- node 415V residential feeders with PEVs [13]. 

 

A.  Uncoordinated PEV Charging 
Uncoordinated PEV charging is investigated by simulating a 
practical scenario with random distribution of PEV charging 
loads. Simulation results are shown in Figs. 5 (a-c) and Table I 
(rows 4-5) from which a significant increase in power 
demand, power generation, voltage deviations and power 
losses can be observed during the peak load hours. This could 
cause suboptimal and expensive generation dispatching.  
As expected, the SG is facing overloading, voltage regulation 
and efficiency problems. For example, for 100% PEV 
penetration, maximum power consumption, maximum system 
losses and cost have increased by about 89% (Fig. 5(a)), 247% 
(Fig. 5(c)) and 110% (Fig. 5(b)), respectively; compared to the 
nominal operation with no vehicles.  

B.  Coordinated Online (OL-CC-GA) PEV Charging  
For further investigations on the performance and accuracy of 
the uncoordinated charging, the online PEV coordination 
strategy based on GA is proposed. Simulation results are 
presented in Fig. 5 and Table I (rows 6-7). Compared to Case 
A, GA is offering further reduction in transformer overloading 
(Fig. 5(a)), maximum generation cost level (Reduced from 
5.68$ (Fig.5 (b)) to 2.68$ (Fig. 5(b))) and maximum system 
losses (Reduced from 3.27KW to 1.12KW), as well as the 
total cost (Reduced from 46.31$/day to 42.44$/day).  
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C.  Coordinated Delayed Partial-Overnight PEV Charging  
The proposed OL-CC-GA is modified to allow for delayed 
partial-overnight PEV charging using Eq. 7. Simulation results 
are shown in Fig.6 and Table I (rows 8-9). The performance of 
partial-overnight PEV charging is different from the 
uncoordinated and online strategies. Total system losses are 
significantly reduced compared to case B while voltage 
fluctuations are still within the 10% limit and the system 
power consumptions are less than the maximum demand level. 
  

 
                                                   (a) 

 
                                                              (b) 

 
                                                   (c) 
Fig. 5.  Simulation results for Cases A-B with 0% and 100% PEV 
penetrations; (a)  system power consumption, (b) generation cost, (c) 
total system losses. 

D.  Coordinated Full-Overnight PEV Charging  
In this case it is considered that all PEVs will be in the queue 
and the aggregator will coordinate charging overnight and all 
PEVs will be fully charged by 8:00 am. To modify OL-CC-
GA for full-overnight PEV charging, Dmax(t) is a constant and 
its value is computed by trial and error to be Dovrnight = 
31.1kW. The performance of full-overnight PEV charging is 
better than Cases A-C as the total system losses are 
significantly reduced and voltage fluctuations are still within 
the 10% limit. 
 

 
                                                          (a) 

 
                                                             (b) 

 
                                                           (c) 
Fig. 6.  Simulation results for Cases C-D with 0% and 100% PEV 
penetrations; (a)  system power consumption, (b) generation cost, (c) 
total system losses. 
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VI.  CONCLUSION 
• An online coordinated charging genetic algorithm (OL-CC-
GA) for PEVs in SG that can also perform delayed (e.g., 
partial-overnight or full-overnight) vehicle charging by 
reducing the distribution transformer loading. Detailed 
simulations results for a 19-node test feeder are presented and 
compared with uncoordinated, online, delayed partial-
overnight and delayed full-overnight PEV charging. Main 
conclusions are: 
• The proposed OL-CC-GA schedules the charging activities 
of randomly arriving PEVs at each time slot based on smart 
meter information using online cost minimization. The 
modified OL-CC-GA takes advantage of the expert knowledge 
to vary the distribution transformer loading level (Dmax(t) in 
Eq. 2B) and perform delayed PEV charging by postponing 
some vehicle charging such that the peak power consumption 
is shifted to the early morning hours to achieve further 
reductions in total costs as compared to online coordination 
strategy. 
• In OL-CC-GA, the total system cost has the maximum 
value among three cases B, C and D; however, all PEVs will 
be charged before 6:00 am. In addition, case B has the 
maximum losses among all coordinated cases, while the 
generation cost has the minimum value in case D to compare 
with the other cases. 
• In delayed partial-overnight PEV charging coordination, the 
generation cost is higher than case D and less than case B. 
  

TABLE I 
Impact of uncoordinated, online coordinated (OL-CC-GA) and 
delayed coordinated PEV charging on the test feeder of Fig. 4. 

 
*) Average voltage deviation over 24 hours (Eq. 2). 
**) Increase in transformer current compared with the nominal case. 
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PEV 
[%] 

ΔV* 
[%] 

I MAX** 
[%] 

Generation 
cost [$/day] 

Total cost  
[$/day] 

Increase in Total 
cost [%] 

Nominal Case: With no PEV (0% PEV  penetration) 
0 7.63 0 35.13 36.6 0 

Case A: Uncoordinated PEV Charging; Fig. 5 
100 16.10 89 46.31 49.75 26.53 

Case B: Online  PEV Charging (OL-CC-GA); Fig. 5 
100 9.89 0 42.44 44.93 15.95 

Case C: Partial-Overnight PEV Charging (Modified OL-CC-GA); Fig. 6 
100 9.78 0 41.06 43.37 12.18 

Case D:  Full-Overnight PEV Charging (Modified OL-CC-GA); Fig. 6 
100 9.72 0 40.20 42.18 9.83 
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