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ABSTRACT 
Time-frequency representations (TFRs) have been 
developed as tools for analysis of nonstationary 
signals.  In this study,  we present overview of time-
frequency analysis methods and some of the key 
problems. The methods in time-frequency domain, 
which are based on Gabor transform (GT) and 
wigner-ville distribution (WVD) are effective in 
dealing with both simulated and real data.  The use of 
the described methods for time-frequency analysis is 
presented.  
 

I. INTRODUCTION 
Describing a given nonstationary signal in time-frequency 
domain is most important because fundamental variables 
in nature are time and frequency.  While the time domain 
indicates how a signal’s amplitude changes over time, the 
frequency domain function tells how often such changes 
occur. Fourier transform (FT) constructs a bridge between 
time and frequency. Main idea behind FT is to decompose 
a signal as the sum of weighted sinusoidal functions. 
Although FT involves simple mathematical background to 
interpret pure frequencies, it is not always the best tool to 
analyze nonstationary signals such as speech signals, 
biomedical signals etc. The frequency contents of natural 
signals change with a time so the classical Fourier 
transform does not reveal such important information. In 
order to overcome the problem, many choices such as 
Short Time Frequency Transform (STFT), Gabor 
transform, wigner-ville distribution, and wavelet 
transform (WT) have been developed.  The tools for time-
frequency analysis, STFT, GT, WVD, and WT are well 
known. In this study, in the analysis of nonstationary 
signals, we employ GT and WVD. The advantage of the 
use these two types of time-frequency analysis methods is 
to display different resolution. The main objective of this 
paper is to introduce the time-frequency analysis methods 
and give some of key problems and analyse nonstationary 
signals in time-frequency domain [1,2]. 

II. MATHEMATICAL BACKGROUND 
2.1 Short-Time Frequency Transform 
STFT (Short-Time Fourier Transform) is a method for 
analysing time-varying waveforms in the frequency-time 
domain. Components of the nonstationary signals are time 
varying, so they suit to short-time analysis. The STFT 
modifies Fourier Transform (inner product of s(t) and 

). Instead of processing the entire signal at once, 
STFT takes FT on a block-by-block basis as indicated in 
Fig. 2.  
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Fig. 1. Short-Time Fourier Transform 

 
Short-time analysis depends on windowing of the 
nonstationary signal to isolate a short time interval is 
called a frame. The windowing proceeds along the time 
axis by shifting an appropriate interval to represent the 
temporal dynamic feature. The shifting interval is called 
the frame interval. 
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Where W(m-n) is a real “window” sequence which 
determines the portion of the input signal that receives 
emphasis at a particular time index k. STFT is clearly a 
function of two variables: the time index k and the 
frequency index n. 
 
2.2 Discrete Gabor Transform 
For a given synthesis window and sampling pattern, 
computing the auxiliary biorthogonal function of DGT 
(Discrete Gabor Transform) is nothing more than solving 
a linear system of equation. The gabor coefficient can be 
though of as the measure of similarity between underlying 
signal s(t) and individual basis function . 
Therefore, it will reflect the signal’s local behaviour as 
long as the given synthesis function is indeed localized 
[3,4,5,6,7].  
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Equation (3) implies that Gabor coefficients are periodic 
in n, i.e., 
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Where  denotes the discrete time sampling interval. 
N indicates the number of frequency channels. W xler 
and Raz proved [8] that biorthogonality between γ  

and  in the discrete case is equivalent to 
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  (5) 
)(~ kγ  is obtained by solving linear system given by  

  (6) µγ =∗
rH

ψ 
where H is a  matrix, whose elements 
are defined as 

LNM −−∆∆ by
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µ  is the  dimensional vector given by NM∆∆
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2.3 Wigner-Ville Distribution 

The Wigner-Ville distribution that has received great 
attention in the signal processing areas for many years is 
one of most prominent member of time-frequency energy 
density function. It is qualitatively different from the 
STFT spectrogram. In 1932, first paper that was related to 
Wigner-Ville distribution was published in the area of 
quantum mechanics. But it has become one of most active 
research areas in the field of signal processing after 1980.  
The WD can roughly be considered as the signal’s energy 
distribution over the time-frequency plane, although 
uncertainty principle prohibits the interpretation as a point 
time-frequency energy density.  The problem of the WVD 
is cross term interference. The wigner-Ville distribution is 
obtained by correlating the signal with a time and 
frequency translated version of itself. The discrete-
time/discrete-frequency Wigner-Ville distribution of s(n) 
is defined by 
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  (9) 
Although the potential of the WVD for signal processing 
has long been recognized its applications are limited 
mainly due to cross term interference problem.  One way 
to identify the auto and cross term is to take the FT with 
respect to the instantaneous auto correlation function. If 
the auto terms are known cross term can be characterized 
in Wigner plane For instance, any pairs of signals create 
one cross term in their midpoint [9]. 
 
2.4 Discrete Wavelet Transform 

Wavelet transform is the weighted decomposition of the 
basis functions of a signal s(t). The wavelet transform is 
great of importance in analysing nonstationary signals. 
Wavelets can also be stretched or compressed to obtain 
low and high frequency wavelets to analyse any signal at 
different resolution levels 
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From equation (10), we see that the wavelet-transform 
requires two parameters, a to scale frequency and b to 
shift time position. For the value of the dilation parameter 
a , mother wavelet function dilates and provides 
to analyse low frequency components of the signal, but 
when  mother wavelet function becomes narrower 
in such way that it provides to analyse high frequency 
components of the signal. Since the parameters [  are 
continuous valued, the transform is called continuous 
wavelet transform (CWT). In general, the scale and shift 
parameters of the wavelet family are sampled as   
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Where j and k are integers. The function family with 
sampled parameters becomes 
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)(, tkjψ  is called the discrete wavelet transform (DWT) 

basis. Note that although it is called DWT, time variable 

of the transform is still continuous. The DWT coefficients 

of a continuous time function are similarly defined as  
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When the DWT set is complete, the wavelet 

representation of a function  is expressed as  )(ts
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By adding more restrictions on the sampling parameters 
and , as well as on the choice of the wavelet ψ  it 

is possible to remove the redundancy in the reconstruction 
formula (14). In [10] Mallat has constructed a bridge 
between the wavelet theory and multi resolution filter 
bank. Fig. 2 gives a filter bank implementation for the 
Mallat's algorithm. 
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Fig. 2a. Implementation of a filter bank (analysis filters) 

 

Fig. 2b. Synthesis filters 

Where  is a high pass filter, while is a low 
pass filter. The outputs of high pass filters are the wavelet 
series coefficients. As fact that, the majority of signal are 
a function of discrete time. Therefore, it is important to 
develop the discrete-time wavelet transform. However, 
unlike the development of the discrete Fourier Transform, 
the discrete wavelet transform cannot be directly derived 
from its continuous-time counterparts. The transition from 
the continuous-time wavelet transform to the discrete 
wavelet transform is much more involved and needs to 
utilize the multi resolution analysis. But the result turns 
out to be extremely simple. Unlike the continuous-time 
wavelet transform, to compute the wavelet transform of a 
signal we need neither scaling functions nor wavelet: just 
simple digital filters 
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III. EXPERIMENTAL STUDY 
Here, we presented some numerical examples which 
demonstrate time-frequency respresentations of 
nonstationary signals. MATLAB software was used to 
write computer programs in this study. Fig. 3. shows the 
STFT-based spectrogram for sum of two nonstationary 
signals. While the time waveform (top plot) and classical 
power spectrum (left plot) only tell a part of the signal’s 
behavior, the STFT-based spectrogram displays how 
frequencies of the sum of the nonstationary signals change 
over time. The main problem of the STFT-based 
spectrogram is that it suffers from  window width effect. 
The width of window yields time and frequency 
resolution. A short time duration window function has 
better time resolution but poor frequency resolution, 
whereas a long time duration window has better frequency 
resolution and poor time resolution. 
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Fig. 3. The STFT-based spectrogram for sum of two 
nonstationary signals. Top plot is waveform of sum of two 
nonstationary signals Left plot is classical power spectrum 
of sum of two nonstationary signals. 
 
Fig. 4. illustrates Wigner-Ville distribution of sum of two 
signals.  The problem of WVD is cross term interfence. 
The cross term reflects the correlation of  two signal 
components.  Fig. 5. illustrates Gabor-based spectrogram 
of sum of two signals. In computing Gabor coefficients, 
the oversampling rate must be more than or equal to one 
for a stable reconstrunction. In this study, time and 
frequency resolution are taken as the value of 64 and 128, 
respectively.  
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Fig. 4. The Wigner-ville distribution of sum of two 
signals. Top plot is waveform of sum of two nonstationary 
signals Left plot is classical power spectrum of sum of 
two nonstationary signals. 
 
 

 
 

 
Fig. 5. Gabor-based spectrogram of sum of two 
nonstationary signals. Top plot is waveform of sum of two 
nonstationary signals Left plot is classical power spectrum 
of sum of two nonstationary signals. 
 



IV. CONCLUSION 
In this study, we presented overview of time-frequency 
analysis methods and some of the key problems because 
time-frequency distribution, are natural to handling time-
variant processing, required in nonstationary situations.  
As given in section II, like the classical Fourier transform, 
the mathematical tools of time-frequency analysis are 
inner product and expansion.  As seen in Fig. 3. and Fig. 
5. Gabor-based spectrogram has better resolution than 
STFT. But in many applications STFT is used due to 
simplicity and easily implementation when a signal’s 
frequencies do not change dramatically. When high 
resolution is required, the Gabor spectrogram is usually a 
favorite because it is relatively robust and efficient. The 
key problem in computing Gabor coefficients is choosing 
over sampling rate that must be  more than or equal to one 
for a stable reconstrunction. The key problem in STFT is 
window length effect. The width of window gives time 
and frequency resolution. A short time duration window 
function has better time resolution but poor frequency 
resolution, while a long time duration window has better 
frequency resolution and poor time resolution. As seen in 
Fig. 4. the main problem in WVD is crossterm 
interference that reflects the correlation of two signals. 
The crossterm prevents WVD from being used for real 
time applications. 
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