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ABSTRACT
In this study, a new mechanism that blends the "PI-
type" and "PD-type" output portions of a fuzzy logic
controller (FLC) is presented. The FLC used in this
study has a new structure and a newly devised input
(s) named as “normalized acceleration”. An empirical
relation and a rule-base are presented for blending PI
and PD portions of the FLC in an on-line and self-
tuning fashion. Both the empirical relation and the
rule-base use the same inputs of the FLC as intelligent
procedures. The robustness and effectiveness of the
blending mechanism are illustrated through
simulations done on a second-order system with
varying parameters.

I. INTRODUCTION
A common FLC derives its decisions from the input error
signal (e) and the change of error (de). Thus, it is
structurally similar to a classical proportional plus
derivative (PD) controller. In fact, the equivalence
between this type of FLCs and conventional PD
controllers have been established [1, 2]. However, most of
the fuzzy logic controllers have been designed as fuzzy
PID-type controllers in later studies [3, 4, 5]. PID-type
FLCs usually face the following difficulties associated
with
• the generation of an effective and reliable rule-base,
• the increase in the size of rule-base with the number of

fuzzy sets used for every input variable in a
polynomial manner,

• the tuning of large number of parameters.

In study [3], Abdelnour and his friends have achieved a
reduction in storage location using the symmetrical
properties of 3-D table designed for fuzzy PID controller.
As an alternative approach Lee [6] has proposed a method
that “gain schedules” a fuzzy PD controller gradually to
become a fuzzy PI controller when the response
approaches to the steady-state. Similar to this method,
Brehm and Rattan [7] have developed a hybrid fuzzy PID

controller switching between a fuzzy PD and a PI
controller. It is obvious that the “scheduling” or
“switching” will not only be difficult to design but also
need to vary with system input and/or operating levels.

In this study, a new mechanism is presented for blending
the “PD-type” and the “PI-type” output portions of the
FLC given in [8]. This FLC consists of two rule-base
blocks and a logical switch in between while each one of
the rule-base blocks have been designed so that they
admit two inputs; namely the “error”(e) and a newly
devised input named as “normalized acceleration” (s).
The input (s) gives a relative value about the “fastness” or
“slowness” of the system response. The blending
mechanism is obtained either through an empirical
formula or a rule-base both using the same inputs of the
FLC in an on-line and self-tuning manner. The robustness
and effectiveness of the blending mechanism are
illustrated through simulations done on a second-order
system with varying parameters.

II. THE NEW INPUT VARIABLE:NORMALIZED
ACCELERATION

The normalized acceleration s(k) that provides an
important and internal information about the system
response is defined in [8] as
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Here, de(k) is the incremental change in error and it is
given by

  1)-e(k-e(k)de(k) =                        (2)
and dde(k) is called the acceleration in error and it is
given by

 1)-de(k-de(k)dde(k) =                    (3)
In (1), de(.) is chosen as follows
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The normalized acceleration s(k) given in (1) yields us a
relative rate information about the “fastness” or
“slowness” of the system response.This rate information
remains within a range of  [-1,1]. If the system response is
very fast, s(k) approaches to 1, and if the system response
is very slow, it approaches to –1. When the system
response increases or decreases with a constant rate, it is
considered as a “medium” rate and s(k) takes the value of
zero.

III. PI PLUS PD BLENDING MECHANISM
In process control systems, fuzzy logic PI controllers are
most common and practical followed by the fuzzy logic
PD controllers. The performance of fuzzy logic PI
controllers is known to be quite satisfactory for linear first
order systems; however, this performance may degrade
for higher order systems, systems with large dead-time
and also for nonlinear systems. Fuzzy logic PD controllers
are, however, suitable for a limited class of systems. In
fact, they should be avoided in presence of measurement
noise and sudden load disturbances. Therefore, fuzzy
logic PID controllers are used in controlling much larger
class of systems. However, fuzzy logic PID controllers are
rarely used due to difficulties associated with the
generation of an efficient rule-base and tuning of large
number of parameters.

Keeping the above facts in mind, we propose a PID-type
FLC as shown in Figure 1. The FLC block used in this
study is presented in [8]. It consists of two rule-base
blocks and a logical switch in between while each one of
the rule-base blocks have been designed so that they
admit two inputs; namely the “error”(e) and a newly
devised input named as “normalized acceleration” (s).
When the output of the FLC block in Fig.1 is taken as
u(k), this controller acts  as a PD-type controller; whereas,
the output is taken to be du(k) the controller becomes PI-
type controller. The PID-type FLC is obtained paralleling
the output of the FLC block as shown in Figure 1.

er

de

s

e

- +
+

+

Figure 1.Structure of the PI and PD-type blending
mechanism

Since the PID-type FLC is formed blending the PI-type
and the PD-type controller outputs, we need two output
blending factors that are designated as CI and CD for PI-
type portion and PD-type portion, respectively. These
blending factors can be found by either trial and error or
an intelligent evolutionary computational scheme.

However, dynamic or adaptive setting of these factors can
either be done using an empirical relation or a rule-base in
an online manner. In this study, we have proposed an
empirical relation and a rule-base that both depend on the
input variables of the FLC; namely, the error “e” and the
relative acceleration “s”. We have set

    CD=1-CI (5)

so that an exact blending mechanism is obtained between
the two controller types; namely, PI-type and PD- type
portions.  The blending factor CI is calculated by either an
empirical formula or a rule-base through the metarules
that can be summarized as follows:

1) For any specific error value CI parameter should
increase as “s” approaches to –1 and it should
decrease as “s” approaches to 1.

2) When the relative speed “s” approaches to –1 and
the error is large (that is e  approaches to 1) then
the effect of the PI-type portion or CI parameter of
the fuzzy logic controller should be “highest”.

Using the above metarules, an empirical relation for CI
can be proposed as follows:
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The above empirical relation is illustrated in Figure 2.
Inspecting the figure, it can easily be deduced that the
metarules of the blending mechanism are satisfied by the
empirical relation.
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Figure 2. Illustration of the empirical relation of CI

A FLC block with the tentative rule-base given in Table 1
can be proposed in place of the empirical relation. The
inputs of the blending FLC are the absolute value of error
“lel” and the normalized acceleration “s”. The input
variable lel is quantized into fuzzy sets of four levels;



whereas, the input variable s is quantized into three levels,
such that,

L= large;   M=medium;  S= small;  Z= zero
Table 1.Rule-base for “CI”

Iel  \  s N Z P
L L L M
M L M S
S M S Z
Z S Z Z

The triangular membership functions are assigned for all
of the variables. The view of the rule-base is shown in
Figure 3. Inspecting this figure, it can easily be seen that
the rule-base also satisfies the metarules of the blending
mechanism.

Figure 3.View of the rule-base for CI

The discrete transfer function of the blending mechanism
can be expressed as
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When the parameter CI is equal to zero the output remains
to be PD-type, since the main FLC produces a PD-type
output. On the other hand, when CI is equal to one the
output of the blending mechanism becomes PI-type. Then,
it is very obvious that, when CI gets values between 0 and
1, the output can be considered as PID-type.

IV. APPLICATIONS
All of the simulations are done on a second-order linear
system described by
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for various values of α ,β . It is assumed that the
parameters α  and β  vary in the range of   [0, 5]. When

the parameters α  and β  vary within this range, the poles
of Gp(s) remain inside the shaded region or stay on the
dark and thick line segment as shown in Figure 4. The
simulations are carried on the typical four pole
configurations as shown in Figure 4 and they are
designated as the cases a, b, c and d. The parameter values
and the related system types of these cases are given as

Case (a):α =5 and β =0;marginally stable / type-1 system
Case (b):α = 52 andβ =5;criticallydamped/type-0 system
Case (c): α =3 and β =4; over-damped / type-0 system
Case (d): α =0 and β =5; oscillatory / type-0 system

The input and output scaling factors for the proposed FLC
are set to the fixed values Ce=Cs=1 and Cu=4. These fixed
values are obtained for an “optimal” system response
using pure PD-type new FLC. Moreover, no online or
offline adjustment or tuning is done on these factors when
the system parameters α  and β  are changed, so that the
effectiveness of the blending mechanism has been tried to
be demonstrated. In all of the simulations uniformly
distributed triangular membership functions are used.

Figure 4. The region for the poles of Gp(s)

The basic or primitive type of blending can be achieved
by mixing the two portions in equal amounts. In this case,
by setting CI equal to 0.5 (so that CD also becomes 0.5),
even blending of PI and PD portions are obtained. This
type of blending does not possess any intelligence and it is
named as "direct-even" blending. Simulations with the
blending mechanism have been performed using three
procedures; namely, “direct-even” blending, the empirical
formula (6) and the FLC with the rule-base given in Table
1. The step responses related to the three blending
procedures have been presented and compared with each
other.



Case (a):α =5 and β =0;marginally stable / type-1 system

The step responses related to case (a) are given in Figure
5. The responses related to the empirical formula and the
fuzzy rule-base are almost the same. Although, all three of
the responses are satisfactory, the response related to the
“direct-even” blending demonstrates a lower quality
compared to the other two responses.
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Figure 5. Step responses for case (a)

Case(b):α = 52 and β =5;criticallydamped/type-0 system

The step responses related to case (b) are given in Figure
6. All three of the responses are again almost the same
and satisfactory; however, the response related to the
fuzzy blending demonstrates a better quality compared to
the other two responses.
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Figure 6.Step responses for case (b)

Case (c): α =3 and β =4; over-damped / type-0 system

The step responses related to case (c) are given in Figure
7. Although, all three of the responses are similar to each

other and oscillatory, the response related to the fuzzy
blending demonstrates a slightly better quality compared
to the other two responses. It is quite possible that much
better responses could be obtained if the input and output
scaling factors of the FLC were tuned.
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Figure 7.Step responses for case (c)

Case (d): α =0 and β =5; oscillatory / type-0 system

The step responses related to case (d) are given in Figure
8. Since the system to be controlled is of oscillatory type
and no tuning on the input and output scaling factors are
done, the output response becomes unstable for "direct-
even" blending procedure. However, when an intelligent
blending mechanism such as a fuzzy rule-base or a
empirical formula is used, the system response remains to
be stable with an acceptable oscillatory behavior under the
same operating conditions; that is, pre-assigned input and
output scaling factors are not changed. This case is the
most remarkable one since it shows the effectiveness and
use of the intelligent blending mechanisms developed in
this study.
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Figure 8.Step responses for case (d)



V. CONCLUSION
In order to design a PID-type of controller from a PD-type
FLC a new blending mechanism with intelligent
procedures are developed in this study. The output of the
blending mechanism is obtained either using an empirical
relation or a rule-base in an online and intelligent manner
or a fixed setting of blending factors. The empirical
relation and the rule-base use the same the input variables
of the proposed FLC. The robustness and effectiveness of
the new FLC and the blending mechanism are illustrated
through simulations done on a second-order system with
varying parameters.

When pure PD-type FLC configuration is implemented
for a second order and type-1 system, a quite good
performance can be achieved. When pure PI-type
configuration is used for type-0 systems with an order
higher than two, the performance degrades quite a bit. In
these cases, a PID-type configuration is inevitable and this
can be achieved by blending PD and PI portions of the
controller. The step responses related to the blending
mechanism with three different procedures have been
presented and compared with each other. In these
simulations, it has been observed that the blending with an
intelligent procedure (rule-base or empirical formula)
produces better results compared to both "direct- even"
procedure (fixed blending factors) and pure PI-type or
PD-type configurations.
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