Elektrik Enerjisi Hava Iletim Hatlarinda Buz ve Rüzgar Yüklerinin IIncelenmesi 2. BÖLÜM

Elêtrik Mühendisi A. Kadir DEĞIRMENCIOĞLU
abdulkadir.degirmencioglu@emo.org.tr

A-ILETKENLERDE BUZ YÜKÜ HESABI

Yönetmelik, buz olușumunun daha ziyade $-5^{\circ} \mathrm{C}$ de meydana geldiğini kabul etmektedir. Şu halde hatların hesabı yapılırken değișik haller denkleminde, bu sıcaklık önemlidir. Bir iletken üstündeki buz yükü, iletkene düşey doğrultuda ek bir kuvvet demektir. İletkene tesir eden toplam yükü bulmak için,

Șekil-1 de buz yüklü bir iletkenin kesiti gösterilmiștir. Bu șekilde:
D:Buzlu iletkenin diş çapı;
d: İletkenin çapı;
p1: Düșey buz yükü ağırlığı (kuvveti);
p2: İletkenin kendi ağırlığı (kuvveti);
po: IIletkenin düşey yönde toplam ağırlıǧını (kuvvetini) göstermektedir.
$\rho=600\left(\mathrm{~kg} / \mathrm{m}^{3}\right)$ buz yoğunluğudur.

Önce buz yükü almıș bir iletkenin, her bölge için D buzlu çapını bulalım. Bunun için yönetmelikte verilen buz yükünün, iletkenin buzlu haldeki ağırlığına eșit olması gerektiği açıktır. Yani (İletkenin uzunluğu bağıntının her iki tarafta olduğundan etkisizdir);
$k V_{d}=\rho\left(D^{2}-d^{2}\right)$ olmalıdır. Buradan D bulunursa;

$$
\mathrm{D}=\sqrt{d^{2}+\frac{4 k}{\rho \pi} \sqrt{d}}
$$

Olarak bulunur. Bilinen değerler bu eșitlikte yerlerine konulursa, iletken çapına bağlı olarak her bölgede buz yüklü iletkenin
D çapı bulunur. Yönetmelik gereği 1.bölgede buz yükünün oluşmadığı kabul edildiğinden diğer bölgelerin buzlu iletkenin D çapı:

$$
\begin{array}{ll}
\text { 2.Bölgede: } & D=\sqrt{d^{2}+424.4 \sqrt{d}}(\mathrm{~mm}) \\
\text { 3.Bölgede: } & D=\sqrt{d^{2}+636.3 \sqrt{d}}(\mathrm{~mm}) \\
\text { 4.Bölgede: } & D=\sqrt{d^{2}+1060.5 \sqrt{d}}(\mathrm{~mm}) \\
\text { 5.Bölgede: } & D=\sqrt{d^{2}+2545 \sqrt{d}}(\mathrm{~mm}) \text { olur. }
\end{array}
$$

380 kV ta kullanılan 954 MCM (Cardinal) iletkenin çapı Tablo-4 den d=30.42 mm olduğu görülmektedir. Bu iletkenin 5. bölgede kullanılması halinde buz yükü altında iletken çapı;
TMMOB ELEKTRIK MÜHENDISLERI ODASI ANKARA ȘUBESI HABER

$D=\sqrt{30.42^{2}+2545 \sqrt{30.42}}=122.32(\mathrm{~mm})$ olacaktır. Net buz kalınlığı ise $\mathrm{D}=\mathrm{D}-\mathrm{d}=122.32-30.42=91.9(\mathrm{~mm})$ dır.Görüldüğü üzere, iletken üzerinde göz ardı edilemeyecek kalınlıkta bir buz kușağı olușmaktadır.Bu iletkende $\mathrm{a}=300 \mathrm{~m}$ rüzgar menzilinde ki olușan buzun toplam ağırlığı ağırlığı;
$M=300^{*} 600^{*}(\pi / 4)^{*}\left(122.32^{2}-30.42^{2}\right)^{*} 10^{-6}=1984.4 \mathrm{~kg}$ olacaktır. Şimdi bu iletken için aynı bölgede buz yükünü hesaplayalım.(5. Bölgede $\mathrm{k}=1.2$ dir)
$\mathrm{P} 1=\mathrm{k} \sqrt{ } \mathrm{d}=1.2 \sqrt{ } 30.42=6.62(\mathrm{~kg} / \mathrm{m})$ olarak bulunur.Bu iletkenin 5 . bölgede birim ağırlı̆ı Tablo-4 den $\mathrm{p} 2=1829.8 \mathrm{~kg} / \mathrm{km}=1.8298 \mathrm{~kg} / \mathrm{m}$ olduğundan; $\mathrm{pO}=\mathrm{p} 1+\mathrm{p} 2=6.62+1.8298=8.45 \mathrm{~kg} / \mathrm{m}$ olarak bulunur. Belli bir aralık (menzilde) iletkene gelen toplam düşey kuvveti bulabilmek için bu değer ilgili aralıkla çarpılmalıdır.

b-iletkenlerde rüzgar yükü hesabi

Yönetmelik, rüzgar yükünün daha çok $+5^{\circ} \mathrm{C}$ sıcaklıkta en etkin olduğunu kabul etmektedir. İletkene bu sıcaklıkta gelecek rüzgar yükünü hesaplamak için gerekli bağıntılar 6/4 bölümünde verilmiștir.Bu yük, rüzgarın en fazla iletkene yatay doğrultuda dik olarak esmesi halinde etkilidir. Hesapların buna göre yapılması gerekir. Yanda Şekil2 de bir iletkene gelen (w1)rüzgar kuvveti ve iletkenin kendi (p1) ağırlığı gösterilmiștir.Șekilden, iletkenin kendi ağırlğının yere dik rüzgar kuvvetinin ise yere koșut (paralel) olarak etki ettiği görülmektedir. Șu halde iletkene, bu iki kuvvetin bileșkesi olan (w) kuvveti etki etmektedir. Şekilden bu iki kuvvetin bileșkesi olan (w) kuvvetinin;
 $w=\sqrt{(w 1)^{2}+(p 1)^{2}}$ şeklinde hesaplanacağı görülmektedir.

Buz yükünü anlatırken, bunun izalatör, travers ve direklere etkisinin az olduğunu bu nedenle hattın direklerinin boyutlandırılmasında ihmal edilebileceğini belirtmiştik. Aynı șeyi rüzgar yükü için yapamayız; zira rüzgâr yükü hem iletkenin kesit yüzeyine, hem de izalatör, travers ve direğin rüzgarın etkisine muhatap toplam dik yüzeylerine (bu yüzey daire, kare, dikdörtgen olabilir) etki ettiğinden ortaya çıkan rüzgar kuvveti artık göz ardı edilemeyecek bir büyüklüktedir. Bu kuvvetin, iletkenlerin ve direklerin boyutlandırılmasında dikkate alınması gereklidir. Şu halde rüzgar kuvveti;
a) İletkenin rüzgâr menzili (a) metre ve $\mathrm{a}<200$ metre ise; iletkene gelen rüzgâr kuvveti $w \mathbf{l}=\mathrm{a}^{*} \mathrm{P}^{*} \mathrm{~d}^{*} \mathrm{C}$ (kg) ile hesaplanmalıdır.
b) İletkenin rüzgar menzili (a) metre ve a>200 metre ise; iletkene gelen rüzgâr kuvveti w $1=$ $C^{*} P^{*} d^{*}\left(80+0.6^{*} a\right)(\mathrm{kg})$ ile hesaplanmalıdır.

Yukarıda örnek verilen 954 MCM (Cardinal) iletkenin 4. bölgede kullanılması halinde her iki durum için rüzgar kuvvetini hesaplayalım:
a) Bu iletkenin rüzgar menzili $\mathrm{a}=175 \mathrm{~m}$ olsun.Bu iletkenin $\mathrm{d}=30.42 \mathrm{~mm}=30.42^{*} 10^{-3} \mathrm{~m}, \mathrm{~d}>15.8 \mathrm{~mm}$ olduğundan Tablo-3 den $\mathrm{c}=1, \mathrm{p}=53 \mathrm{~kg} / \mathrm{m}^{2}$ ve Tablo- 4 ten $\mathrm{p} 1=1.8298 \mathrm{~kg} / \mathrm{m}$ olduğundan rüzgâr kuvveti;

$$
w 1=a^{*} p^{*} \mathrm{~d}^{*} \mathrm{c}=175^{*} 53^{*} 30.42^{*} 10^{-3} * 1=282.15 \mathrm{~kg}
$$

yani hattın birim uzunluğuna $282.15 / 175=1.612 \mathrm{~kg} / \mathrm{m}$ rüzgâr yükü düşmektedir. Bu iletkene tesir eden bileşke kuvvet ise;

$$
w=\sqrt{(w 1)^{2}+(p 1)^{2}}=\sqrt{(175 * 1.8298)^{2}+282.15^{2}}=426.78 \mathrm{~kg}
$$

Hattın birim uzunluğuna düşen bileşke kuvvet ise, $426.78 / 175=2.44 \mathrm{~kg} / \mathrm{m}$ dır.
b) Bu iletkenin rüzgar menzili $\mathrm{a}=300 \mathrm{~m}$ olsun. Bu iletkende $\mathrm{d}=30.42 \mathrm{~mm}=30.42^{*} 10^{-3} \mathrm{~m}, \mathrm{~d}>15.8 \mathrm{~mm}$ olduğundan Tablo-3 den $\mathrm{C}=1, \mathrm{p}=53 \mathrm{~kg} / \mathrm{m}^{2}$ ve Tablo- 4 ten $\mathrm{p} 1=1.8298 \mathrm{~kg} / \mathrm{m}$ dır; şu halde bu iletkenin rüzgâr kuvveti;

$$
\mathrm{w} 1=\mathrm{c}^{*} \mathrm{P}^{*} \mathrm{~d}^{*}\left(80+0.6^{*} \mathrm{a}\right)=1^{*} 53^{*} 30.42^{*} 10-3 *\left(80+0.6^{*} 300\right)=419.19 \mathrm{~kg}
$$

olacaktır. Bu iletkene tesir eden bileșke kuvvet ise;

$$
w=\sqrt{(w 1)^{2}+(p 1)^{2}}=\sqrt{\left(300^{\prime} 1.8298\right)^{2}+419.19^{2}}=690.69 \mathrm{~kg} \text { olarak bulunur. }
$$

Dikkat edilirse a>200 m olması halinde hattın birim uzunluğuna düşen rüzgâr kuvveti; (w 1 = $C^{*} \mathrm{P}^{*} \mathrm{~d}^{*}\left(80+0.6^{*} \mathrm{a}\right)$ ifadesi a^{2} ayracına (parantezine) alınıp kök dışına çıkarılamadığından) bulunamamaktadır. $a>200 \mathrm{~m}$ halinde her rüzgâr menzili için (w1) ayrı olarak hesaplanılmalıdır.

Rüzgar kuvvetinin iletken dışında hatta kullanılan travers, izalatör ve direklerin; rüzgâr yönüne dik yüzeylerine de etki ettiğini belirtmiştik. Bu kuvvetinde değeri büyük olduğundan bu öğeler için de
hesaplanması gerekir. Ancak, izalatör ve traverslere gelen rüzgâr kuvveti direğe gelen rüzgâr kuvvet yanında küçük olduğundan bunları göz ardı ederek sadece direk yüzeyine gelen rüzgâr kuvvetini inceleyelim (Bazı büyük hatlarda izalatör ve traverslere gelen rüzgâr kuvveti de fazla olduğundan göz ardı edilemez).Şuna hemen ișaret edelim: Direk yüzeyine etki eden rüzgâr kuvveti direğin tüm yüzey noktalarına düzgün yayılı bir kuvvet olarak etki ettiğinden bu yayılı yükün direğin tepesinde yaratacağı momente eș kuvvetin bulunup, hesaplarda iletkene gelen bileșke kuvvetle toplanarak, direğin boyutlandırılmasında bu toplam kuvvet göz önüne alınmalıdır. Şimdi direğin rüzgârın esme yönüne maruz olan dik kesitine $S_{d}\left(m^{2}\right)$ diyelim. Şu halde bu direğe gelecek yayılı rüzgar kuvveti; $\mathrm{F}_{\mathrm{d}}=\mathrm{P}^{*} \mathrm{C}^{*} \mathrm{Sd}(\mathrm{kg})$ olacaktır.Yukarıda ki örneğimizde, direğin profil demirden yapılmış kare kafesli ve yüksekliğini de $\mathrm{H}=15 \mathrm{~m}, \mathrm{~S}_{\mathrm{d}}=5 \mathrm{~m}^{2}$ olduğunu kabul edersek ,Tablo-2 ve Tablo-3 den $\mathrm{d}=2.8$ ve $\mathrm{p}=55 \mathrm{~kg} / \mathrm{m}^{2}$ saptarız. Bu değerlerle, direk yüzeyine gelen yayılı F_{d} kuvveti;

$$
\mathrm{F}_{\mathrm{d}}=\mathrm{p}^{*} \mathrm{C}^{*} \mathrm{~S}_{\mathrm{d}}=55^{*} 2.8^{*} 5=770 \mathrm{~kg}
$$

olarak buluruz. Bu yayılı F_{d} kuvvetinin direkte yaratacağı devrilme momentine eșit bir moment yaratacak şekilde direğin tepesinden bu momente eș bir moment doğuracak kuvvetin bulunması, yani bu kuvvetin direğin tepesine aktarılması gerekir. Şimdi ayrıntıya girmeden bunu gösterelim:

H= Direğin toprak üstündeki yüksekliği olsun;
$\mathrm{L}_{1}=$ Direğin tepesinin kafes yapısının bir kenar uzunluğu. (Direğin tepede kafes yapısı kare ise karenin bir kenarı, daire ise dairenin çapı)
$\mathrm{L}_{2}=$ Direğin toprağa girdiği noktadaki kafes yapısının bir kenar uzunluğu (Direğin tepede kafes yapısı kare ise karenin bir kenarı, daire ise dairenin çapı) olsun. Yayılı F_{d} kuvvetinin toplu bir kuvvet gibi etki ettiği noktanın yerden yüksekliği (yani moment kolu) olan (e);

$$
e=\frac{\left(2 L_{1}+L_{2}\right)}{3\left(L_{1}+L_{2}\right)} H \text { (m) }
$$

bağıntısından hesaplanır. Şu halde Fd yayılı kuvvetin, direğin tepesine aktarılmış değeri olan F_{e} kuvveti, e^{*} $\mathrm{F}_{\mathrm{d}}=\mathrm{H}^{*} \mathrm{~F}_{\mathrm{e}}$ momentlerin eşitliğinden;

$$
F_{e}=\frac{\left(2 L_{1}+L_{2}\right)}{3\left(L_{1}+L_{2}\right)} F_{d}(\mathrm{~kg})
$$

olarak bulunur.
Yukarda verilen örnekte $\mathrm{L}_{1}=1 \mathrm{~m}, \mathrm{~L}_{2}=4 \mathrm{~m}$ kabul edilirse; bulunan $\mathrm{F}_{\mathrm{d}}=770 \mathrm{~kg}$ yayılı rüzgâr kuvvetinin yerden itibaren etki noktasının yüksekliği, $\mathrm{e}=\left(\left(2^{*} 1+4\right) /\left(3^{*}(1+4)\right)^{*} 15=6 \mathrm{~m}\right.$ ve tepeye aktarılmış değeri ise $\mathrm{F}_{\mathrm{e}}==\left(\left(2^{*} 1+4\right) /\left(3^{*}(1+4)\right)^{*} 770=308 \mathrm{~kg}\right.$ olarak bulunur. Şu halde örnek aldığımız direğin tepesinden etki eden yatay devirme kuvveti $\mathrm{a}=175 \mathrm{~m}$ için $\mathrm{F}=282.15+308=590.15 \mathrm{~kg}$ ve $\mathrm{a}=300 \mathrm{~m}$ için $\mathrm{F}=419.19+308=727.19 \mathrm{~kg}$ olacaktır. Bu toplam yatay kuvvetin yanında direğe etki eden düşey kuvvetler de dikkate alınarak direk boyutlandirilır.

SONUÇ

Son olarak buz ve rüzgâr yüklerinin etkilerini maddeler halinde yazalım:
1-Buz olușumu yönetmelik gereği $-5^{\circ} \mathrm{C}$ meydana gelir. Olușturacağı buz yükü direğe düșey yönde bir kuvvetle etki ederek direklerin bası yönünde boyutlandırılmasında dikkate alınmalıdır.
2-Yönetmeliǧe göre rüzgâr yükünün en etkili olacağı sıcaklık $+5^{\circ} \mathrm{C}$ dır. Rüzgâr yükü direğe yatay yönde tesir eden bir kuvvet uygular. Buda direklerin eğilme bakımından boyutlandırılmasında etkili bir kuvvettir.
3-Rüzgâr ve buz yükünden dolayı ortaya çıkan kuvvetler hat iletkeninin seçilmesinde de etkili bir rol oynarlar. Bu yükler dikkate alınmadan iletken seçimi yapılamaz.
4-Çok özel koşullar hariç, genellikle buz yükü rüzgâr yükünden büyüktür.
5-Iletim hatları bu kuvvetler dikkate alarak boyutlandırılsa dahi ișletmede ek bazı sorunlarda ortaya çıkarırlar. Bunlar hatların normal ömürlerinin kısalması, titreşimlere neden olarak iletken kopması gibi nedenlerdir.

KAYNAKÇA

1- Gönenç, İzzet; Yüksek Gerilim Tekniği Cilt-I, 1977 İstanbul
2- Özkaya, Muzaffer; Yüksek Gerilim Tekniği Cilt-I ve II, 1988 İstanbul
3- Özkaya, Muzaffer; Yüksek Gerilim Tekniğinde Ölçme, İ.T.Ü 1966 İstanbul
4- Akhunlar, Ahmet;Statik Elektrik Alanı, 1995 İstanbul

