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Özetçe— Maymun çiçeği hastalığı, 2022 yılında küresel 
ölçekte ciddi bir salgın riski oluşturarak Dünya Sağlık Örgütü 
(DSÖ) ve ulusal otoritelerin hızlı önlem süreçleri geliştirmesine 
neden olmuştur. Teşhis aşamasında genellikle laboratuvar 
testleri kullanılmasına rağmen, hastalığın yüksek bulaşıcılığı 
nedeniyle destekleyici tanı yöntemlerine ihtiyaç duyulmaktadır. 
Bu çalışmada, açık kaynaklardan elde edilen 510 maymun çiçeği 
ve 749 maymun çiçeği olmayan cilt görüntüsünden oluşan 
toplam 1259 görsel, veri artırma yöntemleriyle zenginleştirilerek 
8.533 görüntüden oluşan bir veri setine dönüştürülmüştür. 
Maymun çiçeği enfeksiyonu taşıyan ve taşımayan cilt 
görsellerinin sınıflandırılmasında sekiz farklı önceden eğitilmiş 
derin öğrenme mimarisi eğitilmiş ve test edilmiştir. Elde edilen 
sonuçlara göre, yüksek doğruluk oranlarına sahip DenseNet169, 
DenseNet201 ve Xception modellerinden çıkarılan özellik 
vektörleri birleştirilerek, yığınlama temelli topluluk öğrenmesi 
yaklaşımıyla yeni bir model tasarlanmış ve test veri seti üzerinde 
%99.30 doğruluğa ulaşmıştır. Modelin detaylı performans 
analizleri sunulmuş ve sınıflandırma yaparken odaklandığı 
bölgeleri tespit etmek için de Gradyan Ağırlıklı Sınıf Aktivasyon 
Haritalandırma (Grad-CAM) kullanılmıştır.  
 

Anahtar Kelimeler — Maymun çiçeği, Derin öğrenme, 
Topluluk öğrenmesi, Grad-CAM, Görüntü sınıflandırma, 
Transfer öğrenme. 

 
Abstract— Monkeypox posed a significant global outbreak 

risk in 2022, leading the World Health Organization (WHO) and 
national authorities to implement rapid preventive measures. 
Although laboratory tests are primarily used for diagnosis, the 
high transmissibility of the disease highlights the need for 
supportive diagnostic approaches. In this study, a dataset 
consisting of 1,259 skin images, including 510 monkeypox and 
749 non-monkeypox cases obtained from open sources, was 
expanded to 8,533 images through data augmentation 
techniques. Eight pre-trained deep learning architectures were 
trained and evaluated for the classification of monkeypox and 
non-monkeypox skin images. Based on the experimental results, 
a new stacking-based ensemble learning model was developed 
by combining feature vectors extracted from the high-performing 

DenseNet169, DenseNet201, and Xception architectures, 
achieving an accuracy of 99.30% on the test dataset. Detailed 
performance analyses were conducted, and Gradient-weighted 
Class Activation Mapping (Grad-CAM) was utilized to visualize 
the regions of interest influencing the model’s classification 
decisions 

 
Keywords — Monkeypox, Deep learning, Ensemble 

learning, Grad-CAM, Image classification, Transfer learning. 
 
 

1. Giriş 
Maymun çiçeği virüsü ilk olarak 1958 yılında Kopenhag’da 

yer alan Statens Serum Enstitüsü'nde maymunlardan izole 
edilmiş, hastalık adını da buradan almıştır [1]. Maymun çiçeği 
hastalığı ise ilk kez 1970 yılında Demokratik Kongo 
Cumhuriyeti’nde tanımlanmıştır. Bu tarihten itibaren vakaların 
önemli bir kısmı hâlen Demokratik Kongo Cumhuriyeti’nden 
bildirilmektedir [2]. 1970’li ve 1980’li yıllarda bu zoonotik 
enfeksiyon üzerine yapılan kapsamlı çalışmalar, hastalığın büyük 
ölçüde sporadik (tekil, dağınık) olarak ortaya çıktığını, kişiden 
kişiye bulaşmanın sınırlı kaldığını ve genellikle iki nesilden 
öteye geçmediğini göstermiştir. 
 

Dünya Sağlık Örgütü (DSÖ), 23 Temmuz 2022 tarihinde 
maymun çiçeği hastalığını “Uluslararası Öneme Sahip Halk 
Sağlığı Acil Durumu (PHEIC)” olarak ilan etmiştir. DSÖ 
raporlarına göre, hastalığın dünya genelinde yayılım gösterdiği 
ve birçok ülkede endemik hâle geldiği doğrulanmıştır. 23 
Ağustos 2022 itibarıyla Avrupa Bölgesi’ndeki 41 ülkede 21.098 
vaka ve iki ölüm bildirilmiştir. Vakaların büyük çoğunluğunun 
erkek bireylerde görüldüğü rapor edilmiştir [3]. Maymun çiçeği 
hastalığının yeniden ortaya çıkışı ve endemik olmayan 
bölgelerde artan vaka sayısı, küresel sağlık açısından giderek 
büyüyen bir tehdit oluşturmaktadır. Bu nedenle, virüsün doğru 
ve hızlı bir şekilde tespit edilmesi, krizin küresel boyutunun 
öngörülmesi ve gerekli koruyucu önlemlerin zamanında alınması 
açısından kritik öneme sahiptir [4].  
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Polimeraz Zincir Reaksiyonu (PCR) testleri, maymun çiçeği 
hastalığının kontrolü ve yönetimi açısından altın standart olarak 
kabul edilmektedir [5]-[11]. Ancak Afrika bölgesinde sınırlı 
laboratuvar altyapısı, test kitlerinin yetersizliği, nitelikli personel 
eksikliği ve yüksek maliyet gibi etmenler nedeniyle bu testlerin 
uygulanabilirliği oldukça sınırlıdır [12], [13]. Bu durum, 
özellikle Orta ve Batı Afrika’daki endemik bölgelerden Avrupa 
ve Amerika’ya yayılan yeni salgın dalgasıyla birlikte, hızlı, 
düşük maliyetli ve erişilebilir tanı yöntemlerine olan ihtiyacı 
artırmıştır. Son yıllarda, yapay zekâ tabanlı yaklaşımlar bu 
ihtiyaca yönelik umut verici çözümler sunmaktadır. Özellikle 
COVID-19 salgını sürecinde sağlık alanında yaygın biçimde 
kullanılan derin öğrenme algoritmaları, benzer şekilde maymun 
çiçeği hastalığının tespiti için de literatürde değerlendirilmiş; 
açık kaynak veri setleri üzerinde transfer öğrenme yöntemiyle 
eğitilen modellerin karşılaştırmalı performansları raporlanmıştır 
[7]–[10]. 

 
Bu çalışmanın amacı, geliştirilen veri seti ve topluluk 

öğrenmesi yaklaşımı ile maymun çiçeği hastalığına yönelik bir 
klinik karar destek sistemi geliştirmek ve maymun çiçeği 
hastalığının cilt lezyon görüntüleri üzerinden etkili ve hızlı bir 
şekilde tespitini sağlamaktır. Bu kapsamda, literatürden ve açık 
kaynak veri tabanlarından elde edilen maymun çiçeği, diğer cilt 
lezyonları ve normal cilt görselleri birleştirilerek bütünleşik bir 
veri seti oluşturulmuştur. Bu veri seti üzerinde literatürde öne 
çıkan sekiz farklı derin öğrenme modeli eğitilmiş ve test 
edilmiştir. Elde edilen performans sonuçlarına göre, 
DenseNet169, DenseNet201 ve Xception modellerinin ara 
katmanlarından çıkarılan özellik vektörleri birleştirilerek bir 
meta model tasarlanmış ve aynı veri seti üzerinde diğer 
modellere kıyasla en yüksek doğruluk değerine ulaşılmıştır. Son 
yıllarda yapılan çalışmalar, maymun çiçeği hastalığının 
tespitinde farklı derin öğrenme ve topluluk öğrenmesi 
modellerinin performanslarını kapsamlı biçimde incelemiştir. Bu 
yaklaşım, topluluk öğrenmesi (ensemble learning) yönteminin 
özellikle klinik uygulamalarda tanı süreçlerine anlamlı katkı 
sağlayabileceğini göstermektedir. 

 
 

2 Literatüre Bakış 
Ali ve arkadaşları (2022), internet üzerinden topladıkları 228 

orijinal deri görüntüsünden oluşturdukları genişletilmiş veri seti 
üzerinde çeşitli derin öğrenme modellerini değerlendirmiştir. 
Veri artırma (data augmentation) yöntemi uygulanarak veri seti 
3.192 örneğe çıkarılmıştır. Deneysel çalışmalarda VGG16, 
ResNet50, InceptionV3 ve hibrit modeller test edilmiş; ResNet50 
modeli %82,96 doğruluk (accuracy) oranıyla en yüksek 
performansı göstermiştir. Diğer modellerde ise VGG16 
(%81,48), hibrit (%79,26) ve InceptionV3 (%74,07) doğruluk 
değerleri elde edilmiştir [9]. 
 

Ahsan ve arkadaşları (2022), anonim kaynaklardan elde 
ettikleri maymun çiçeği, suçiçeği, kızamık ve normal cilt 
görüntülerini kullanarak “Monkeypox2022” adında yeni bir veri 
seti oluşturmuştur. Çalışmada, ince ayarlama (fine-tuning) 
yöntemiyle optimize edilen VGG16 modeli sınıflandırma 
amacıyla eğitilmiş ve test veri seti üzerinde %83 doğruluk 
oranına ulaşmıştır. Ayrıca, modelin karar mekanizmasını 
yorumlayabilmek için LIME (Local Interpretable Model-
Agnostic Explanations) algoritması uygulanmıştır [14]. 
 

Bala ve arkadaşları (2023), çalışmalarının ilk aşamasında 
farklı derin öğrenme modellerinden elde ettikleri özellikleri 

(feature extraction) makine öğrenmesi sınıflandırıcılarıyla 
birleştirerek çok aşamalı bir sınıflandırma yapısı önermiştir. 
İkinci aşamada ise, modifiye edilmiş DenseNet201 mimarisinin 
hem orijinal hem de artırılmış veri setleri üzerindeki 
performansını değerlendirmiştir. Elde edilen sonuçlara göre, 
model orijinal veri setinde %91,91, artırılmış veri setinde ise 
%98,91 doğruluk (accuracy) oranına ulaşarak diğer modellere 
göre üstün performans göstermiştir [15]. 

 
Şahin (2022), Sitaula (2022) ve Altun (2023) tarafından 

yürütülen çalışmalarda, farklı derin öğrenme tabanlı mimariler 
karşılaştırmalı olarak incelenmiştir. Şahin ve arkadaşları (2022), 
açık kaynak veri seti üzerinde gerçekleştirdikleri deneylerde 
ResNet18, GoogleNet, EfficientNetB0, NasNetMobile, 
ShuffleNet ve MobileNetV2 modellerini test etmiş; 
MobileNetV2 modelinin 60 epoch sonunda %91,11 doğruluk 
oranına ulaştığını raporlamıştır [16].  

 
Benzer biçimde, Sitaula ve arkadaşları (2022) transfer 

öğrenme yaklaşımıyla 13 farklı güncel derin öğrenme modelini 
çok sınıflı sınıflandırma amacıyla incelemiş; ince ayarlama (fine-
tuning) yapılan Xception ve DenseNet169 modellerinin sırasıyla 
%85,01 ve %84,07 doğruluk değerlerine ulaştığını bildirmiştir 
[17].  

 
Öte yandan, Altun (2023) parametre ve katman mimarisinde 

yaptığı yapısal değişikliklerle geliştirdiği yeni MobileNetV3 
modelinin, EfficientNetV2s, VGG19, ResNet50 ve DenseNet 
modellerine kıyasla daha yüksek sınıflandırma başarısı 
gösterdiğini belirtmiştir. Ayrıca, Altun’un çalışmasında 
kullanılan model eğitimi için temel veri kaynağı mobil cihazlar 
üzerinden elde edilmiştir [18]. 
 

Literatürde yer alan çalışmaların büyük çoğunluğunda, 
modelin aşırı öğrenmesini (overfitting) veya yetersiz 
öğrenmesini (underfitting) önlemek amacıyla veri artırma (data 
augmentation) yöntemleri uygulanmıştır. Araştırmacılar, model 
başarısında doğru hiperparametre optimizasyonunun kritik bir 
rol oynadığını vurgulamıştır. Bununla birlikte, mevcut veri 
setlerinin çoğunun sağlık kuruluşları tarafından paylaşılmadığı 
ve tıp uzmanları tarafından doğrulanmadığı ifade edilmiştir. Bu 
durum, literatürdeki modellerin klinik geçerliliğini sınırlayan 
önemli bir faktör olarak değerlendirilmektedir. Bazı çalışmalarda 
ise, YOLO ve Detectron2 gibi nesne tanıma (object detection) 
temelli yaklaşımların maymun çiçeği hastalığının tespitinde 
alternatif ve etkili sınıflandırıcılar olabileceği belirtilmiştir [18]. 
 

Literatürde son dönemlerde yer alan çalışmalar, klasik CNN 
mimarilerinden hibrit ve topluluk öğrenmesi tabanlı modellere 
doğru belirgin bir yönelim olduğunu göstermektedir. Taşpınar 
(2024), ince ayarlama (fine-tuning) yöntemiyle optimize ettiği 
VGG16 ve VGG19 modellerinin doğruluk oranlarını sırasıyla 
%95,61’den %96,87’ye ve %96,08’den %97,81’e yükselterek 
transfer öğrenmenin etkinliğini ortaya koymuştur [19].  

 
Akram (2025), Bala ve arkadaşlarının internet tabanlı veri 

setini kullanarak LightGBM, Random Forest, Logistic 
Regression, Extra Trees, InceptionV3, Xception ve ResNet50 
algoritmalarını eğitmiş, test etmiş ve bu modellerin bir arada 
kullanılmasıyla yüksek doğruluk oranları elde etmiştir [20].  

 
Maqsood (2024), orijinal ve artırılmış verilerden oluşturduğu 

8.689 görsellik veri setinde Evrişimli Seyrek Görüntü Ayrıştırma 
(Convolutional Sparse Image Decomposition) yöntemiyle 
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özellik birleştirme (feature fusion) işlemi gerçekleştirmiş, 
ardından geliştirdiği MOX-NET modelini M-SVM 
sınıflandırıcısı ile test ederek %90 üzeri doğruluk sağlamıştır 
[21]. Asif (2023) ise meta-sezgisel (meta-heuristic) tabanlı hibrit 
topluluk öğrenmesi yaklaşımıyla iki sınıfta %97,78, dört sınıfta 
ise %92,86 doğruluk elde ederek literatürdeki en yüksek 
performanslardan birini bildirmiştir [22]. Literatürdeki diğer 
araştırmalar da, tekil CNN tabanlı sınıflandırıcılara kıyasla 
topluluk (ensemble) ve hibrit yaklaşımların istikrarlı biçimde 
daha yüksek doğruluk ve genelleme performansı sunduğunu 
göstermektedir [23], [24]. 
 

Bu çalışmada; 
 

(i) Yinelenen verilerden arındırılmış, hibrit “Maymun 
Çiçeği/Maymun Çiçeği Olmayan” veri havuzu oluşturulmuş, 
 
(ii) Farklı CNN mimarileri, geliştirilen veri seti üzerinde 
karşılaştırmalı olarak değerlendirilmiş, 
 
(iii) Özellik düzeyi yığınlama topluluk öğrenmesi yaklaşımıyla 
oluşturulan meta modelin, tekil modellere kıyasla üstün doğruluk 
ve kararlılık sergilediği ortaya konmuştur. 
 

Elde edilen bulgular, özellikle kaynak kısıtlı bölgelerde saha-
yakın tarama ve ön değerlendirme amaçlı mobil/web tabanlı 
klinik karar destek sistemlerine entegre edilebilecek, hızlı, düşük 
maliyetli ve ölçeklenebilir bir çözüm çerçevesi sunmaktadır. 
Böylece PCR gibi altın standart doğrulama yaklaşımlarının 
yerini almadan, ön tarama ve triyaj basamaklarını güçlendirecek 
etkin bir yapay zekâ katmanı önerilmektedir. 
 
 

3. Materyal ve Yöntem 
Modellerin tahminleme performansını artırmak amacıyla, ilk 

aşamada farklı kaynaklardan elde edilen veri setleri bir araya 
getirilmiş ve yinelenen (duplike) veriler temizlenmiştir. Bu adım 
sonucunda, maymun çiçeği cilt lezyonları, diğer cilt lezyonları 
ve normal cilt görüntülerinden oluşan hibrit bir veri tabanı 
oluşturulmuştur. İkinci aşamada, benzersiz görseller üzerinde 
uygulanan veri artırma (data augmentation) işlemleriyle daha 
geniş bir veri seti elde edilmiştir. Takip eden aşamalarda, görüntü 
sınıflandırma problemini çözmek amacıyla farklı derin öğrenme 
modelleri kullanılmıştır. Bu modellerin özgün veri seti 
üzerindeki performansları karşılaştırılmış; en başarılı modeller 
seçilerek özellik düzeyi yığınlama topluluk öğrenmesi (feature-
level stacking ensemble learning) yöntemiyle yeni bir model 
geliştirilmiştir. Geliştirilen model, DenseNet169, DenseNet201 
ve Xception mimarilerine göre daha yüksek sınıflandırma 
performansı göstermiştir.  
 
 
3.1. Hibrit Veri Seti Oluşturma 

Bu çalışmada, literatürdeki araştırmalar incelenmiş ve 
çevrimiçi klinik veri tabanları taranarak hibrit bir veri seti 
oluşturulmuştur. Literatürde, maymun çiçeği hastalığına yönelik 
tamamen doğrulanmış ve geniş kapsamlı bir açık veri seti 
bulunmamaktadır. Yapay zekâ temelli çalışmalar açısından, veri 
bilimi kritik öneme sahiptir; çünkü büyük ve çeşitli veri setleri, 
model performansını doğrudan olumlu etkilemektedir [25]. Bu 
nedenle, önerilen modelin başarısını artırmak amacıyla kapsamlı 
bir hibrit veri seti tasarlanmıştır. Çalışmada kullanılan örnek 

maymun çiçeği ve maymun çiçeği olmayan görseller Şekil 1’de 
gösterilmektedir. 

 

 
Şekil. 1. Veri Seti 

 

Hibrit veri seti oluşturulurken, Bala ve arkadaşları (2023) 
tarafından geliştirilen dört sınıflı veri seti [15] (suçiçeği: 107, 
kızamık: 91, maymun çiçeği: 279, normal: 293; toplam 770 adet, 
224×224 piksel), DermNet tarafından yayımlanan “Mpox 
Images” veri seti (28 adet maymun çiçeği lezyon görüntüsü) [26], 
Kaggle platformundaki “Data_monkeypox” veri seti [27] ve 
Ahsan ve arkadaşlarının (2022) açık kaynaklı “Monkeypox2022” 
veri seti [14] kullanılmıştır.  

Ayrıca Shams Ali ve arkadaşlarının (2022) çalışmasındaki iki 
sınıflı veri seti [9] ve Google arama motoru üzerinden 
“monkeypox” anahtar kelimesiyle elde edilen yüksek 
çözünürlüklü görseller de veri havuzuna dahil edilmiştir. Erişilen 
veri tabanlarının URL adresleri ve erişim tarihleri kaynaklar 
kısmında belirtilmiştir. Kullanılan veri setleri, halka açık şekilde 
paylaşılmış, kişisel kimlik bilgisi içermeyen dermatolojik 
görüntülerden oluşmaktadır.  

Çalışma açık erişimli ikincil verilerle yürütülen bilgisayarlı 
görü tabanlı bir yöntem geliştirme çalışmasıdır. Bu kapsamda etik 
kurul izni gerektirmediği değerlendirilmiştir. Bununla birlikte 
veri setleri, ilgili platformların kullanım koşulları çerçevesinde 
kullanılmış olup kaynaklar çalışmada belirtilmiştir. 

Toplamda, 741 adet maymun çiçeği ve 1.124 adet diğer cilt 
görüntüsünden oluşan iki sınıflı bir hibrit veri seti elde edilmiştir. 
Farklı kaynaklardan derlenen verilerde yinelenen (duplike) 
görüntülerin bulunması nedeniyle, veriler Piksel Tabanlı Sağlama 
Toplamına Dayalı Yinelenme Önleme (Pixel-Based Checksum-
Based Deduplication) yöntemiyle kontrol edilmiştir [28].  

 
Görsellerin RGB değerleri hex formatına dönüştürülerek 

MD5 algoritmasıyla özet değerleri hesaplanmış, aynı piksel 
içeriğine sahip görseller silinmiştir. Ayrıca işlemin doğruluğunu 
teyit etmek için, HSV renk uzayında histogram tabanlı 
karşılaştırma (cv2.HISTCMP_CORREL) yöntemi kullanılmış ve 
tamamen aynı histogramlara sahip görseller kaldırılmıştır.   

 
Duplike (tekrar eden) görüntülerin tespit edilip silinmesi 

amacıyla gerçekleştirilen işlemlerin pseudo code algoritması 
aşağıdaki gibi girdi görsel kümesi ve temizlenmiş çıktı görsel 
kümesi adımları ile birlikte uygulanmıştır. RGB formatına 
dönüşüm, piksel dizisi belirleme, histogram analizleri ile 
histogramdan elde edilen verilen korelasyonu adımları Algoritma 
I’de görülmektedir.  
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Algoritma 1. Yinelenen Görsel Temizleme Süreci 
 

 Girdi: Görsel kümesi I = {I1, I2, ..., In}, histogram benzerlik 
eşiği τ 

Çıktı: Temizlenmiş görsel kümesi I_clean 
1: HashTablo ← boş sözlük   (anahtar: MD5, değer: 

dosya_yolu) 
2: AdayDuplikeler ← boş liste (çiftler) 
3: her görsel Ii için: 
4: img ← oku(Ii) 
5: img_rgb ← RGB formatına dönüştür 
6: md5 ← MD5(img_rgb piksel dizisi) 
7: eğer md5 HashTablo’da varsa: 
8: Aday Duplikeler’e (HashTablo[md5], Ii) ekle 
9: aksi halde: 
10: HashTablo[md5] ← Ii 
11: Silinecekler ← boş küme 
12: her (A,B) çifti AdayDuplikeler için: 
13: hA ← HSV histogram(A) 
14: hB ← HSV histogram(B) 
15: s ← Korelasyon(hA, hB)   (örn. cv2.HISTCMP_CORREL) 
16: eğer s ≥ τ ise: 
17: Silinecekler’e B ekle   (aynı içeriğin tekrarı kabul edilir) 
18: I_clean ← I \ Silinecekler 

       19: çıktı olarak I_clean döndür 
 
 Yinelenen görüntülerin eğitim (train) ve test kümelerine 
dağılmasını önlemek amacıyla, veri seti bölme 
(train/validation/test ayrımı) işleminden önce tüm görseller 
üzerinde yinelenen (duplike) görüntü tespiti ve temizleme 
adımları uygulanmıştır. Bu kapsamda, piksel tabanlı özetleme ve 
içerik benzerliği kontrollerinden geçen ve benzersiz olduğu 
doğrulanan görüntülerden oluşan nihai veri havuzu elde 
edilmiştir. Veri seti bölme işlemi yalnızca bu temizlenmiş veri 
havuzu üzerinde gerçekleştirilmiş olup, böylece aynı veya yüksek 
derecede benzer görüntülerin farklı veri kümelerinde yer 
almasının önüne geçilmiştir. Bu yaklaşım, olası veri sızıntısını 
(data leakage) engelleyerek model performansının tarafsız 
biçimde değerlendirilmesini sağlamaktadır. Bu işlemler 
sonucunda, veri seti 510 adet maymun çiçeği ve 749 adet diğer 
cilt görüntüsünden oluşan temiz ve benzersiz bir hâle getirilmiştir. 
Ayrıca, model eğitiminde kullanılacak maymun çiçeği ve 
maymun çiçeği olmayan tüm görsellerin, tanısal açıdan yeterli ve 
görsel kalite bakımından uygun olmasına dikkat edilmiştir. Bu 
kapsamda, düşük çözünürlüklü, aşırı bulanık, ciddi ışıklandırma 
problemi içeren, lezyon bölgesinin net olarak ayırt edilemediği 
veya görüntü üzerinde yoğun metin, çerçeve ve filigran 
(watermark) bulunan görseller veri seti dışı bırakılmıştır. 
Parlaklık dağılımı ve genel piksel değişkenliği incelenerek, görsel 
bilgi içeriği sınırlı olan örnekler elenmiştir. Ayrıca, görüntü 
netliğini değerlendirmek amacıyla kenar belirginliği dikkate 
alınmış; bulanıklık düzeyi yüksek ve ayırt edici yapısal özellikler 
içermeyen görüntüler ayıklanmıştır. 

 
 

3.2. Veri Artırma ve Ön Hazırlık 
Veri artırma (data augmentation), sınırlı veri miktarı bulunan 

veya modelin genelleme kabiliyetini geliştirmek istenen 
durumlarda yaygın olarak kullanılan bir tekniktir. Bu işlem 
Literatürdeki bulgular doğrultusunda, bu çalışmada veri uzayı 

temelli artırma (data-space augmentation) yaklaşımı uygulanmış 
ve bu yöntemin, özellik uzayı temelli artırma (feature-space 
augmentation) yöntemlerine kıyasla daha etkili sonuçlar ürettiği 
gözlemlenmiştir [29]. Bu kapsamda, yoğun veri artırma (heavy 
data augmentation) teknikleri tercih edilmiştir [30]. Veri artırma 
işlemleri, Keras ImageDataGenerator yapısı kullanılarak çevrim 
içi (online) olarak gerçekleştirilmiştir. Veri artırımı ham verilere 
uygulanmamış olup her eğitim adımında rastgele dönüşümler 
uygulanarak veri artırımları sağlanmıştır. Veri seti, özgün 
görüntüler temel alınarak eğitim, doğrulama ve test kümelerine 
ayrılmıştır. 
 

Görseller PNG formatında olup, model mimarileriyle 
uyumlu olacak şekilde 224×224 piksel boyutuna ölçeklenmiştir. 
Artırma işlemleri sonrasında veri seti, 3.682 adet maymun çiçeği 
cilt lezyon görüntüsü ve 4.851 adet diğer cilt görüntüsü olmak 
üzere toplam 8.533 örnekten oluşmuştur. Modelin eğitim ve 
değerlendirme aşamaları için veriler %81 eğitim, %9 doğrulama 
(validation) ve %10 test olacak şekilde rastgele bölünmüştür. 
Veri setinin eğitim, doğrulama ve test kümelerine rastgele 
bölünmesi sırasında, deneysel sonuçların tekrarlanabilirliğini 
sağlamak amacıyla sabit bir rastgelelik tohumu (random seed) 
kullanılmıştır. Bu çalışmada, tüm bölme işlemleri random seed = 
42 değeri ile gerçekleştirilmiştir. Buna göre, 6.911 eğitim, 768 
doğrulama ve 854 test örneği kullanılmıştır. Çalışmada 
kullanılan veri artırma parametreleri Tablo 1’de görülmektedir.  
Bu çalışmada veri artırma işlemleri, görüntü ön işleme hattında 
belirli bir sıraya göre uygulanmıştır. İlk olarak tüm görüntüler 
model giriş boyutuna uygun olacak şekilde 224×224 piksel 
çözünürlüğe yeniden boyutlandırılmıştır. Ardından rastgele 
yatay çevirme (horizontal flip), döndürme (rotation), kaydırma 
(width/height shift), kesme (shear) ve yakınlaştırma (zoom) 
işlemleri uygulanmıştır. Son aşamada ise piksel değerleri [0,1] 
aralığına ölçeklenerek (rescale=1./255) normalize edilmiştir. Bu 
sıralı yapı sayesinde, geometrik dönüşümlerden sonra sayısal 
ölçekleme gerçekleştirilmiş ve veri bütünlüğü korunmuştur. 

 
                          Tablo 1. Veri Artırma Değerleri 

Veri Çoğaltma 
Türü 

Parametre Adı Değer Açıklaması 

Rastgele 
Döndürme 

rotation_range 0 ile 40 derece 
arasında rastgele 

döndürme 
Yatay Kaydırma   

width_shift_range 
Görüntünün 
genişliğinin %20’si 
oranında kaydırma 

Dikey Kaydırma     
height_shift_range 

Görüntünün 
yüksekliğinin %20’si 
oranında kaydırma 

Kesme 
(Shearing) 

shear_range Görüntüye 0.2 
oranında kesme (açılı 
kaydırma) 

Yakınlaştırma zoom_range Görüntüyü %20 
oranında 
yakınlaştırma/uzaklaştı
rma 

Yatay Çevirme         
horizontal_flip 

True → Rastgele yatay 
çevirme uygulanır. 

Doldurma Modu fill_mode 'nearest' → Boş kalan 
pikseller üzerinden en 
yakın piksel 

 
Bu artırma parametreleri, modelin aşırı öğrenme (overfitting) 

eğilimini azaltmak ve sınıflar arası dengeyi güçlendirmek 
amacıyla belirlenmiştir.  
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3.3. Yapay Sinir Ağları 
Yapay Sinir Ağları (Artificial Neural Networks – ANN), 

insan beynindeki biyolojik nöronlardan esinlenerek geliştirilen 
yapay zekâ modelleridir. Bu ağlar; örüntü tanıma, sınıflandırma 
ve tahminleme gibi görevleri yerine getiren çok katmanlı yapılar 
olarak tasarlanmıştır. Temel olarak girdi katmanı, gizli 
katman(lar) ve çıktı katmanından oluşurlar. Modelin bir 
iterasyonu, ileri besleme (forward propagation ) ve geri yayılım 
(backward propagation) süreçlerinin tamamlanmasıyla 
gerçekleşir. Her iterasyonda ağ, hata oranını azaltmak ve 
genelleme kabiliyetini artırmak amacıyla ağırlıklarını 
güncellemektedir. Şekil 2’de yapay sinir ağının genel yapısı 
şematik olarak sunulmaktadır [31]. 

 

 
Şekil. 2. Yapay Sinir Ağlarının Genel Yapısı [32] 

 
Evrişimsel Sinir Ağları (Convolutional Neural Networks – 

CNN), özellikle görüntü verilerinin analizi için optimize edilmiş 
çok katmanlı yapay sinir ağı mimarileridir. Klasik ANN 
yapılarından farklı olarak, CNN’ler görüntülerin yapısal 
özelliklerini doğrudan giriş verisinden çıkarabilme yeteneğine 
sahiptir. Bu mimarilerde, tam bağlantılı katmanlardan önce 
uygulanan filtreleme (convolution) işlemleriyle görüntülerin 
ayırt edici özellikleri yakalanır. CNN’ler tipik olarak şu 
bileşenlerden oluşur: evrişim katmanı (convolutional layer), 
havuzlama katmanı (pooling layer), aktivasyon katmanı 
(activation layer), düzleştirme katmanı (flatten layer) ve tam 
bağlantılı katman (fully connected layer) [33]. 
 

Evrişim (convolution) katmanı, CNN yapısının çekirdek 
bileşenidir. Bu katman, giriş verisi üzerinde hareket eden küçük 
boyutlu filtreler aracılığıyla mekânsal ilişkileri korur ve öznitelik 
(feature) haritaları üretir. Her filtre farklı bir görsel deseni veya 
dokusal özelliği algılamak üzere eğitilir. Evrişim işlemi Denklem 
(1)’de gösterilmektedir [34]: 

 
𝑆𝑆(𝑖𝑖, 𝑗𝑗) = (𝐼𝐼 ∗ 𝐾𝐾)(𝑖𝑖, 𝑗𝑗) = ∑ ∑ 𝐼𝐼(𝑖𝑖 + 𝑚𝑚, 𝑗𝑗 + 𝑛𝑛). 𝐾𝐾(𝑚𝑚, 𝑛𝑛)

𝑛𝑛𝑚𝑚
  

(1) 
 
Havuzlama (pooling) katmanı, evrişimli ağlarda boyut 

indirgeme ve öznitelik çıkarımını sağlayan bir katmandır. Bu 
katman, küçük konumsal kaymalara karşı dayanıklılık 
kazandırarak modelin genelleme kabiliyetini güçlendirir [35]. En 
sık kullanılan yöntemlerden maksimum havuzlama (max 
pooling), yerel bir alan içindeki en yüksek değeri seçerken, 
ortalama havuzlama (average pooling) her bölgedeki değerlerin 
ortalamasını alır. Ortalama havuzlama işlemi Denklem (2)’de 
tanımlanmıştır [33]: 

𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎 (𝑋𝑋) =  1
𝑁𝑁 ∑ 𝑥𝑥𝑖𝑖

𝑁𝑁

𝑖𝑖=1
 

(2)                 

3.4. Çalışmada Yer Alan Modeller 
Bu çalışmada, literatürde yaygın biçimde kullanılan ve başarı 

göstermiş sekiz adet önceden eğitilmiş (pre-trained) derin 
öğrenme modeli deneysel olarak değerlendirilmiştir. Görseller, 
tüm modellerin giriş boyutlarıyla uyumlu olacak şekilde 
224×224 piksel çözünürlüğe ölçeklenmiş ve veri ön işleme 
aşamasında normalize edilmiştir. 

 
Sınıflandırma performansını karşılaştırmak amacıyla şu 

modeller kullanılmıştır: Xception, InceptionV3, MobileNetV2, 
DenseNet121, DenseNet169, DenseNet201, VGG16 ve VGG19. 
Bu modeller, farklı derinliklerde ve mimari yapılarda olmaları 
sayesinde, özellik çıkarımı (feature extraction) açısından geniş 
bir çeşitlilik sunmaktadır. Bu çeşitlilik, sonraki aşamada 
geliştirilen topluluk öğrenmesi (ensemble learning) tabanlı meta 
modelin temelini oluşturmaktadır. Bu modellerin seçilme nedeni, 
farklı derinlik düzeylerinde evrişimsel katman yapıları 
barındırmaları ve sınıflandırma performanslarının literatürdeki 
benzer çalışmalarda kanıtlanmış olmasıdır. 
 
 
3.5. Eğitim Yapılandırması ve Optimizasyon 
Ayarları 

Aşırı öğrenmeyi önlemek ve eğitim sürecini kararlı hâle 
getirmek için üç geri çağırım kullanılmıştır. EarlyStopping, 
monitor='val_loss', patience=10 ve restore_best_weights=True 
parametreleriyle yapılandırılmıştır. ReduceLROnPlateau, 
monitor='val_loss', factor=0.5, patience=5 ve min_lr=1e-7 
olacak şekilde uygulanmıştır. En iyi model ağırlıklarını 
kaydetmek amacıyla ModelCheckpoint, monitor='val_accuracy', 
save_best_only=True, mode='max' ve verbose=1 ayarlarıyla 
kullanılmıştır. 
 
 
3.6. Geliştirilen Model 

Bu çalışmada, toplam sekiz önceden eğitilmiş derin öğrenme 
modeli üzerinde ince ayarlama (fine-tuning) işlemleri 
uygulanmış ve oluşturulan hibrit veri setiyle eğitim, doğrulama 
ve test süreçleri gerçekleştirilmiştir. DenseNet169, DenseNet201 
ve Xception mimarileri, hem teorik hem de deneysel gerekçelere 
dayanarak seçilmiştir. DenseNet tabanlı mimariler, yoğun 
bağlantı (dense connectivity) yapıları sayesinde düşük seviyeli 
ve yüksek seviyeli özellikleri etkin biçimde birleştirerek özellikle 
tıbbi görüntülerde ince dokusal desenlerin yakalanmasında 
başarılıdır. Xception mimarisi ise derinlemesine ayrılabilir 
evrişim (depthwise separable convolution) yapısı sayesinde 
mekânsal ve kanal bazlı özellikleri ayrıştırarak tamamlayıcı bir 
temsil sunmaktadır. Deneysel sonuçlar incelendiğinde, bu üç 
modelin test veri kümesi üzerinde en yüksek doğruluk ve 
genelleme performansını sergileyen mimariler olduğu 
görülmüştür. Bu nedenle, bilgi çeşitliliğini maksimize etmek 
amacıyla performans açısından öne çıkan bu üç modelin özellik 
çıkarım katmanlarından elde edilen vektörler, özellik düzeyinde 
yığınlama (feature-level stacking) temelli topluluk öğrenmesi 
(ensemble learning) yaklaşımıyla birleştirilerek yeni bir meta 
model tasarlanmıştır. Geliştirilen meta model, bireysel modellere 
kıyasla daha yüksek doğruluk ve kararlılık göstermiştir. 
Algoritma beş temel aşamadan oluşmaktadır: 

 
A. Model Hazırlığı ve Veri Yükleme: NumPy, Matplotlib ve 

Scikit-Learn kütüphaneleri çalışmaya dahil edilmiş; daha önce 
eğitilmiş DenseNet169, DenseNet201 ve Xception modellerinin 
ağırlık dosyaları load_model() fonksiyonu ile yüklenmiştir. 
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Görseller, tf.keras.preprocessing.image.ImageDataGenerator 
sınıfı kullanılarak 0–1 aralığında yeniden ölçeklendirilmiş 
(rescale=1./255) ve eğitim, doğrulama ve test dizinlerinden 
flow_from_directory() fonksiyonu aracılığıyla çekilmiştir. 
Görüntüler 224×224 piksel olarak yeniden boyutlandırılmış ve 
32’lik mini-batch grupları halinde ikili sınıflandırma (binary 
classification) etiketleriyle işlenmiştir. 

 
B. Özellik Çıkarımı (Feature Extraction): Her modelin en 

zengin bilgi taşıyan katmanları analiz edilerek, Global Average 
Pooling (GAP) katmanlarının çıktıları özellik vektörleri olarak 
seçilmiştir. Elde edilen vektörlerin boyutları sırasıyla 
DenseNet201 için (None, 1920), DenseNet169 için (None, 1664) 
ve Xception için (None, 2048) olarak belirlenmiştir. Literatürde, 
benzer biçimde VGG16 ve ResNet50V2 modellerinden çıkarılan 
özellik vektörlerinin birleştirilmesiyle geliştirilen modellerin 
%95 doğruluk oranına ulaştığı gösterilmiştir [36], [37]. Bu 
çalışmada, üç derin mimarinin GAP katmanlarından elde edilen 
özellik vektörlerinin birleştirilmesiyle bilgi çeşitliliği 
artırılmıştır. Özellik düzeyi yığınlama (feature-level stacking) 
aşamasında, DenseNet169, DenseNet201 ve Xception 
modellerinin Global Average Pooling (GAP) katmanlarından 
elde edilen özellik vektörleri kullanılmıştır. Bu vektörlerin 
boyutları sırasıyla 1664, 1920 ve 2048’dir. Her bir modelden elde 
edilen özellikler, birleştirme (concatenation) işleminden önce 
Batch Normalization katmanı ile normalize edilmiştir. Bu 
normalizasyon işlemi, farklı mimarilerden gelen özelliklerin 
ölçek farklarını azaltarak birleşik temsilin daha kararlı hâle 
gelmesini sağlamıştır. Birleştirilen özellik vektörü, çok katmanlı 
yoğun (Dense) bloklar üzerinden işlenmiştir. Bu bloklarda, 
gradyan kaybını önlemek ve derin temsil öğrenimini 
güçlendirmek amacıyla residual (kısa yol) bağlantılar 
kullanılmıştır. Residual bağlantılar, belirli yoğun katmanların 
girişlerinin doğrudan sonraki katmanların çıkışlarına eklenmesi 
prensibine dayanmaktadır. Bu yapı sayesinde, ağın daha derin 
katmanlarında bilgi kaybı azaltılmış ve optimizasyon süreci daha 
kararlı hâle getirilmiştir. Residual mimari, özellikle yüksek 
boyutlu özellik uzaylarında öğrenme verimliliğini artıran etkili 
bir strateji olarak literatürde yaygın biçimde kullanılmaktadır.  

 
C. Meta Model Tasarımı: Her dal (DenseNet169, 

DenseNet201, Xception) kendi özellik vektörünü işlerken 
sırasıyla Yoğun Katman (Dense Layer), Toplulaştırma Katmanı 
(Batch Normalization), Sızıntılı Doğrusal Birim (Leaky ReLU) 
ve Bırakma (Dropout) katmanlarından geçirilmiştir. Katmanlar 
arasında kısa yol (residual) bağlantılar eklenerek gradyan kaybı 
önlenmiştir. Üç dalın çıktıları Concatenate işlemiyle 
birleştirilmiş ve ardından ek Dense–Dropout bloklarıyla 
güçlendirilmiştir. Çıkış katmanında tek nöronlu sigmoid 
aktivasyon fonksiyonu kullanılarak ikili sınıflandırma 
gerçekleştirilmiştir. Şekil 3’de meta model girdi – çıktı akışı 
eklenmiştir. Ayrıca özelliklerin nasıl normalize edildiği 
açıklanmıştır. Ayrıca Leaky ReLU aktivasyonu Denklem (3)’te 
verilmiştir [38]: 
 

𝑓𝑓(𝑥𝑥) = {−𝑥𝑥, 𝑥𝑥 > 0
𝑎𝑎𝑎𝑎, 𝑥𝑥 ≤ 0(𝛼𝛼 ≈ 0.01) 

(3) 

 
Şekil. 3. Meta-Model Girdi-Çıktı Akışı 

 
D. Eğitim ve Optimizasyon: Meta model eğitiminde 

binary_crossentropy kayıp (loss) fonksiyonu kullanılmıştır. Meta 
model, AdamW optimizatörü, Erken Durdurma (EarlyStopping), 
Öğrenme Oranını Azaltma (ReduceLROnPlateau) ve 
ModelCheckpoint geri çağrıları ile eğitilmiştir. 
Hiperparametreler sırasıyla: epoch = 100, batch size = 32, 
öğrenme oranı = 0.0005, dropout oranları = 0.3, 0.4, 0.5 olarak 
belirlenmiştir. Eğitim sonrası model, test seti üzerinde 
değerlendirilmiş ve tüm metriklerde (accuracy, precision, recall, 
F1-score) ayrı modellere kıyasla anlamlı iyileşme sağlamıştır.  

 
Eğitim süreci boyunca modelin eğitim ve doğrulama 

kayıplarının epoch bazlı değişimi incelendiğinde, başlangıç 
aşamasında her iki kayıp değerinin birlikte ve düzenli biçimde 
azaldığı görülmüştür. Bu durum, modelin veri setindeki ayırt 
edici örüntüleri etkin biçimde öğrenmeye başladığını 
göstermektedir. İlerleyen epoch’larda eğitim kaybı azalmaya 
devam ederken doğrulama kaybının daha sınırlı değişimler 
göstermesi, model öğrenmesinin doygunluk aşamasına 
yaklaştığına işaret etmektedir. Bu aşamada devreye giren erken 
durdurma (Early Stopping) mekanizması, doğrulama kaybındaki 
iyileşmenin durduğu noktada eğitimi sonlandırarak modelin 
genelleme yeteneğinin korunmasına katkı sağlamıştır. 

 
Modelin aşırı öğrenme eğilimini azaltmak ve genelleme 

yeteneğini artırmak amacıyla birden fazla düzenlileştirme 
(regularization) stratejisi birlikte kullanılmıştır. Yoğun 
katmanlarda uygulanan L2 ağırlık cezası (λ = 0.0001), ağ 
ağırlıklarının aşırı büyümesini sınırlandırarak daha pürüzsüz bir 
karar yüzeyi elde edilmesini sağlamaktadır. Buna ek olarak, 
farklı katmanlarda uygulanan Dropout (0.3–0.5 aralığında), 
eğitim sırasında rastgele nöron devre dışı bırakılması yoluyla 
birlikte uyumlanan (co-adaptation) özelliklerin oluşmasını 
engelleyerek modelin daha genellenebilir temsiller öğrenmesine 
katkı sağlamıştır. Batch Normalization katmanları ise aktivasyon 
dağılımlarını dengeleyerek öğrenme sürecini kararlı hâle 
getirmiştir.  
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E. Sonuç: Elde edilen topluluk tabanlı meta model, 
DenseNet169, DenseNet201 ve Xception ağlarının birlikte 
kullanılmasıyla yüksek genelleme başarısı göstermiştir. Modelin 
eğitim ve test performanslarına ilişkin ayrıntılı bulgular, Bölüm 
4’te sunulmaktadır. 
 
 

4. Sonuçlar ve Tartışma 
Bu çalışmada, literatür ve açık kaynaklı veri tabanlarından 

elde edilen görsel veriler bir araya getirilerek maymun çiçeği 
hastalığına yönelik bütünleşik bir veri seti oluşturulmuştur. 
Yinelenen (duplike) görüntüler ayıklanarak özgün bir veri 
havuzu elde edilmiştir. Ardından sekiz farklı önceden eğitilmiş 
derin öğrenme modeli ve önerilen meta model kullanılarak, cilt 
lezyon görüntüleri üzerinden maymun çiçeği hastalığının tespiti 
amaçlanmıştır. Tüm modellerin sınıflandırma performansları 
detaylı metriklerle değerlendirilmiş ve önerilen modelin ayrı ayrı 
kullanılan modellere göre üstün sonuçlar verdiği gösterilmiştir. 
Eğitim ve test süreçleri Google Colab Pro ortamında, 16 GB 
GDDR6 belleğe sahip NVIDIA Tesla T4 GPU (Turing mimarisi) 
kullanılarak yürütülmüştür. Bu donanım konfigürasyonu, yüksek 
çözünürlüklü görüntüler üzerinde verimli eğitim yapılmasını 
sağlamıştır (bkz. Tablo 2). 

 
               Tablo 2. NVIDIA Tesla T4 GPU Özellikleri 

Özellik Açıklama 
GPU Mimarisi NVIDIA Turing (TU104) 
CUDA Çekirdek Sayısı 2.560 
Tensor Çekirdek Sayısı 320 
Bellek Kapasitesi 16 GB GDDR6 
Bellek Bant Genişliği 320 GB/s 
Bellek Arayüzü 256-bit 

 
Görüntüler, maymun çiçeği pozitif ve maymun çiçeği 

olmayan negatif olmak üzere iki ana sınıfa ayrılmıştır. Pozitif 
sınıfta 3.682, negatif sınıfta ise 4.851 örnek (maymun çiçeği, 
suçiçeği, kızamık ve normal cilt görüntülerinden oluşan) yer 
almakta olup, sınıflar arasındaki dağılım modelin dengesiz veri 
sorununa maruz kalmadan eğitilmesini sağlamıştır. Veriler, 
rastgele ancak dengeli biçimde %81’i eğitim, %9’u doğrulama 
ve %10’u test seti olacak şekilde ayrılmıştır. Tüm klasör ve 
görüntü dosyaları Google Drive™ ortamında saklanmış ve 
algoritmaya dosya yolları aracılığıyla dahil edilmiştir. 

 
Derin öğrenme modelleriyle yapılan deneysel çalışmalar 

sonucunda, sekiz temel mimarinin ve önerilen topluluk 
modelinin performans metrikleri karşılaştırmalı olarak 
değerlendirilmiştir. Önerilen model, test veri seti üzerinde 
%99,30 doğruluk (accuracy), %99,31 kesinlik (precision), 
%99,30 duyarlılık (sensitivity) ve %99,30 F1 skoru elde ederek 
en yüksek sınıflandırma başarısına ulaşmıştır. 
Karşılaştırmalı sonuçlar Tablo 3’te sunulmuştur ve önerilen 
modelin, tekil CNN tabanlı yaklaşımlara kıyasla anlamlı ölçüde 
daha yüksek doğruluk ve genelleme performansı sergilediği 
görülmektedir. Bu sonuçlar, modelin hem pozitif hem de negatif 
sınıfları yüksek güvenle ayırt edebildiğini göstermekte ve 
önerilen mimarinin güçlü genelleme kapasitesini 
doğrulamaktadır. 

 
 
 
 
 

Tablo 3. Modellerin Performans Sonuçları 
Model Doğruluk Kesinlik Duyarlılık F1 

Skoru 
VGG16 %84.89 %85.79 %84.89 %84.96 
VGG19 %82.79 %83.36 %82.79 %82.86 
DenseNet-
121 

%96.60 %96.62 %96.60 %96.60 

DenseNet-
169 

%98.48 %98.49 %98.48 %98.48 

DenseNet-
201 

%98.95 %98.95 %98.95 %98.95 

Inception 
V3 

%97.19 %97.22 %97.19 %97.19 

Xception %98.24 %98.24 %98.24 %98.24 
MobileNet 
V2 

%98.24 %98.24 %98.24 %98.24 

Önerilen 
Model 

%99.30 %99.31 %99.30 %99.30 

 
Modelin eğitiminde kullanılan temel hiperparametre 

değerleri Tablo 4’te özetlenmiştir. Eğitim süreci, tüm veri seti 
üzerinde 100 epoch boyunca yürütülmüş ve her iterasyonda 32 
örnek kullanılmıştır. Öğrenme oranı (learning rate) 0.0005 olarak 
belirlenmiş, doğrulama kaybı beş ardışık döngü boyunca 
iyileşme göstermediğinde öğrenme oranı %50 azaltılmıştır. Aşırı 
öğrenmeyi (overfitting) önlemek amacıyla, dal bloklarda dropout 
oranı 0.3–0.4, birleşik katmanlarda ise 0.5 olarak seçilmiştir. 
Modelin karar eşiği 0.82 olarak optimize edilmiş, her özellik 
dalında 1024 ve 512 nöronlu yoğun (Dense) katmanlar 
kullanılmıştır. Üç dalın çıktıları birleştirildikten sonra 512, 256 
ve 128 nöronlu tam bağlantılı katmanlardan geçirilmiştir. Bu 
yapı, modelin derin özellikleri yakalayarak yüksek doğrulukta 
sınıflandırma yapabilmesini sağlamıştır. 
 

Tablo 4. Önerilen Model Hiperparametre Değerleri 
Döngü Yığın 

Boyutu 
Öğrenme 
Oranı 

Düşürme 
(Dropout) 

Eşik 
Değeri 

Nöron 
Sayısı 

100 32 0.0005 0,3, 0,4, 
0.5 

0.82 512, 
256, 
128 

 
Modelin test verisi üzerindeki karışıklık matrisi Şekil 4’te 

gösterilmiştir. Toplam 854 örnek içerisinde model, 485 negatif 
ve 363 pozitif örneği doğru şekilde sınıflandırmıştır. Yanlış 
pozitif (false positive) örnek tespit edilmemiş, yalnızca 6 yanlış 
negatif (false negative) gözlemlenmiştir. Buna göre, doğru 
negatif (TN) = 485, doğru pozitif (TP) = 363, yanlış pozitif (FP) 
= 0 ve yanlış negatif (FN) = 6’dır. Yanlış pozitif oranı %0.00, 
yanlış negatif oranı ise %1.63 olarak hesaplanmıştır. Bu 
sonuçlar, modelin özellikle pozitif örnekleri yüksek doğrulukla 
ayırt edebildiğini ve yanlış alarm üretmeden güçlü bir genel 
performans sergilediğini göstermektedir. 

 
 

Şekil. 4. Önerilen Model Karışıklık Matrisi 
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Önerilen modelin eğitim ve doğrulama eğrileri Şekil 5’te 
verilmiştir. Eğitim doğruluğu (training accuracy) döngüler 
ilerledikçe kademeli biçimde artarak 1’e yaklaşmış, doğrulama 
doğruluğu (validation accuracy) ise genel olarak yüksek 
seviyelerde seyretmiş ancak doğal dalgalanmalar göstermiştir. 
Bu durum, modelin aşırı öğrenme (overfitting) eğiliminde 
olmadığını ve doğrulama performansının istikrarlı şekilde 
korunduğunu göstermektedir. Eğitim kaybı (training loss) 
döngüler boyunca sürekli azalarak sıfıra yakınsamış, doğrulama 
kaybı (validation loss) da düzenli bir düşüş eğilimi sergilemiştir. 
Son epoch’larda her iki kayıp eğrisinin de düşük seviyelerde 
birbirine yakın değerler alması, modelin genel dengeleme ve 
genelleme başarısının yüksek olduğunu ortaya koymaktadır.  

 
Modelin sınıflandırma kararlarının görsel olarak 

açıklanabilirliğini değerlendirmek amacıyla Gradyan Ağırlıklı 
Sınıf Aktivasyon Haritalaması (Grad-CAM) yöntemi 
uygulanmıştır (Şekil 7). Her iki sınıftan en az üç örnek ve ayrıca 
yanlış sınıflandırılan örnekler için Grad-CAM çıktıları 
sunulmuştur. Isı haritaları, ilgili mimarinin son evrişimsel 
katmanından türetilmiştir. Grad-CAM çıktılarında yüksek 
aktivasyon değerleri (sıcak renkler) çoğunlukla lezyon 
bölgeleriyle örtüşmüş, bu durum modelin kararlarını arka plan 
yerine patolojik lezyon alanlarına dayandırdığını göstermiştir. 
Yanlış sınıflandırılan örneklerde ise aktivasyonların düşük 
kontrastlı veya atipik lezyon bölgelerine yoğunlaştığı 
görülmektedir. 

 

 
(a) 

 

 
(b) 

İ 

Şekil. 5. Önerilen Model Doğruluk Kayıp Grafikleri 

Önerilen nihai meta modelin sınıflandırma başarımı, test veri 
kümesi üzerinde Alıcı İşletim Karakteristiği (Receiver Operating 
Characteristic – ROC) eğrisi kullanılarak değerlendirilmiştir. 

Şekil 6’da sunulan ROC eğrisi altında kalan alan (AUC) değeri 
0.9994 olarak elde edilmiştir. Bu yüksek AUC değeri, geliştirilen 
meta modelin maymun çiçeği ve maymun çiçeği olmayan cilt 
lezyonlarını ayırt etme konusunda son derece güçlü bir ayırt 
edicilik kapasitesine sahip olduğunu göstermektedir. 

Şekil. 6. Önerilen Model ROC Eğrisi 

                  

 
             Şekil. 7. Önerilen Model Grad-CAM Analizi 

Literatürde yer alan önde gelen çalışmaların doğruluk 
performansları Tablo 5’de özetlenmiştir. Önerilen yöntem 
(tabloda Ö.Y. şeklindedir), %99,30 doğruluk oranı ile tüm 
referans modellerden daha yüksek bir başarı elde etmiştir. Bu 
çalışmada test seti üzerinde en yüksek genelleme performansını 
sunan DenseNet169, DenseNet201 ve Xception modellerinden 
çıkarılan derin özellikler birleştirilerek özellik düzeyinde 
yığınlama topluluk öğrenmesi (feature-level stacking ensemble 
learning) yöntemiyle yeni bir meta model geliştirilmiştir. Bu 
yaklaşım, tekil modellerin güçlü yanlarını bir araya getirerek 
doğruluk, kesinlik ve kararlılık açısından istikrarlı biçimde üstün 
sonuçlar üretmiştir.  

Elde edilen bulgular, geliştirilen hibrit veri seti ve topluluk 
öğrenmesi mimarisinin yalnızca maymun çiçeği hastalığının 
tanısında değil, genel olarak tıbbi görüntü tabanlı tanı 
sistemlerinde de kullanılabilecek yenilikçi ve ölçeklenebilir bir 
çerçeve sunduğunu göstermektedir. Bu nedenle önerilen yöntem, 
literatürde özellik düzeyinde topluluk öğrenmesine dayalı ilk 
hibrit veri seti üzerinden maymun çiçeği/maymun çiçeği olmayan 
sınıflandırma modeli olma niteliği taşımaktadır. 
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Tablo 5. Sonuçların Literatür Karşılaştırması 
Ref. Model Doğruluk Duyarlılık Kesinlik F1 

[14] VGG 16 %97.00 %97.00 %97.00 %97.00 
[15] Derin CNN 

Modeli 
%98.91 %98.91 %98.91 %98.91 

[9] ResNet50 %82.96 %83.00 %87.00 %84.00 
[16] MobileNet 

V2 
%91.11 %90.00 %90.00 %90.00 

[17] Oylama 
Topluluk 
Öğrenmesi              
[DenseNet169 
+ Xception] 

%87.13 %85.47 %85.44 %85.40 

Ö.Y. Önerilen 
Model 

%99.30 %99.30 %99.31 %99.30 

 
 

5. Genel Değerlendirme ve Gelecek Çalışmalar 
Bu çalışma kapsamında, literatür ve açık kaynak veri 

tabanlarından derlenen görüntüler birleştirilerek maymun çiçeği 
hastalığının cilt görüntülerinden tespitine yönelik yenilikçi bir 
hibrit veri seti oluşturulmuştur. Veri setinin büyüklüğü sayısal 
olarak sınırlı olmakla birlikte, farklı kaynaklardan elde edilen 
görüntülerin lezyon tipleri, cilt tonları ve görüntüleme koşulları 
açısından sunduğu çeşitlilik, modelin ayırt edici örüntüleri 
öğrenmesine önemli ölçüde katkı sağlamıştır. Bu bağlamda, 
model karmaşıklığı yalnızca örnek sayısı temelinde değil, veri 
setinin içerdiği bilginin çeşitliliği birlikte dikkate alınarak ele 
alınmıştır. Görüntü işleme ve veri artırma adımlarının ardından, 
sekiz farklı önceden eğitilmiş derin öğrenme modeli transfer 
öğrenme yaklaşımıyla değerlendirilmiş; en yüksek performansı 
sergileyen DenseNet169, DenseNet201 ve Xception 
mimarilerinden elde edilen özellikler birleştirilerek özellik 
düzeyinde yığınlama topluluk öğrenmesine dayalı bir meta 
model geliştirilmiştir. Önerilen model, literatürde raporlanan 
referans çalışmalarla karşılaştırıldığında daha yüksek bir 
doğruluk oranı (%99,30) elde etmiştir. 
 

Elde edilen bulgular, geliştirilen mimarinin yalnızca 
maymun çiçeği hastalığının tespitinde değil, farklı tıbbi görüntü 
tabanlı tanı ve triyaj sistemlerinde de uygulanabilir bir yapay 
zekâ çerçevesi sunduğunu göstermektedir. Bu yaklaşım, PCR 
gibi altın standart laboratuvar yöntemlerinin yerini almadan, saha 
yakın tanı ve ön değerlendirme basamaklarını destekleyebilecek 
hızlı, düşük maliyetli ve ölçeklenebilir bir karar destek 
mekanizması olarak değerlendirilebilir. Dolayısıyla çalışma, 
topluluk öğrenmesi temelli derin özellik birleştirme (feature-
level ensemble) stratejisinin klinik karar destek sistemlerinde 
tanı doğruluğunu artırmada etkili bir yöntem olduğunu ortaya 
koymaktadır. 

Çalışmanın güçlü yönlerinden biri, farklı derin evrişimsel 
mimarilerden elde edilen tamamlayıcı özelliklerin özellik düzeyi 
yığınlama yaklaşımıyla bir araya getirilmesi ve model 
performansının doğruluk, duyarlılık, kesinlik ve F1 skoru gibi 
çoklu metrikler üzerinden kapsamlı biçimde değerlendirilmiş 
olmasıdır. Ayrıca, Grad-CAM tabanlı açıklanabilirlik analizleri, 
modelin karar mekanizmasının görsel olarak 
yorumlanabilmesine olanak tanıyarak klinik güvenilirliği 
desteklemiştir. 
 

Bununla birlikte, çalışmanın bazı sınırlılıkları da 
bulunmaktadır. Kullanılan veri setinin örnek sayısının sınırlı 
olması ve görüntülerin farklı açık kaynaklardan elde edilmesi, 
gerçek klinik ortamlarda karşılaşılabilecek dağılım farklılıklarını 
tam olarak yansıtamayabilir. Ayrıca, profesyonel klinik 

değerlendirme ve piksel düzeyinde anotasyonların bulunmaması, 
sonuçların klinik doğrulama açısından yorumlanmasında dikkatli 
olunmasını gerektirmektedir. Gelecek çalışmalarda, veri seti 
çeşitliliğini artırmaya yönelik gelişmiş veri büyütme ve sentetik 
veri üretim yöntemlerinin kullanılması, veri gizliliğini koruyarak 
çok merkezli eğitim imkânı sunan federated learning 
yaklaşımlarının uygulanması planlanmaktadır. 

 
Buna ek olarak, önerilen modelin gerçek zamanlı sistemlerde 

ve mobil platformlarda uygulanabilirliğinin değerlendirilmesi, 
gelecekteki çalışmalar için önemli bir araştırma alanı olarak 
görülmektedir. Bu kapsamda, modelin daha hafif mimarilerle 
uyumlu hâle getirilmesi, hesaplama maliyeti açısından optimize 
edilmesi ve çevrimdışı veya yarı çevrimdışı karar destek 
senaryolarında kullanılabilirliğinin incelenmesi 
hedeflenmektedir. 
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