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ABSTRACT

The performance of the unconditional maximum like-

lihood location estimator for the near-�eld sources is

studied based on the concentrated likelihood approach

to abtain CRB. Some insights into the achievable

performance of the conditional maximum likelihood

algorithm is obtained by numerical evaluation of the

Cram�er-Rao bounds for di�erent test cases.

1. INTRODUCTION

The problem of localizing multiple narrow band so-

urces by a passive sensor array is common to diverse

applications including radar, sonar, communication,

seismology and electronic surveillance [1]. However,

majority of the localization methods deals with the

case in which the source is assumed to be in the far-

�eld of the array [1], [2]. That is, the source is as-

sumed to be at an in�nite distance from the array,

and hence, the waves emitted by the sources can be

considered as plane waves. Thus each source loca-

tion can be characterized by only the azimuth (bear-

ing). When the sources are located close to the array

(i.e., near-�eld), the inherent curvature of the wave-

forms can no longer be neglected. Therefore, the

spherical wavefronts in the near-�eld scenario must

be considered and the location of each source have to

be parametrized in terms of the direction of arrival

(DOA) and range [3], [4], [5], [6].

Regarding the assumption on the narrow-band sour-

ce signals, there are two di�erent types of models.

These two models lead corresponding ML solutions.

The models are

i. Conditional model (CM) which assumes the sig-

nals to be unknown but deterministic (i.e., the

same in all realizations)

ii. Unconditional Model (UM) which assumes the

signals to be random.

ML methods corresponding to the signal models (i)

and (ii) are termed conditional ML and unconditional

ML respectively. Expectation/Maximization (EM)

based conditional ML (signal model (i)) near-�eld lo-

cation estimator have been studied in [5].

The asymptotical performance of an unconditional

ML near-�eld localization technique is analysed via

the Cram�er Rao Bounds (CRB) provides benchmarks

for evaluating the performance of actual estimators.

The technique for the derivation of CRB's used here

in relies as modulators of the log-likelihood function

by replacing the nuisance parameters with their ML

estimates. It therefore avoids the process of explicitly

calculating and invert the entire FIM. We substitute

the ML estimates of the array observation covariance

matrix to obtain concentrated covariance matrix. We

then calculated the CRB's for near-�eld source loca-

tion parameters.

We use the standard narrowband observation for d
near-�eld sources impinging on an array ofM sensors

[3]. Letting � 2 R
d�1 and � 2 R

d�1 denote the

vectors of near-�eld source location parameters to be

estimated, M sensor outputs x(tn) = [xkmin(tn); � � � ;
xkmax(tn)]

T , can be written in matrix form as

x(tn) = A(�; �)s(tn) + n(tn); 1 � tn � N (1)

where s 2 C
d�1 is the source signal vector, s =

[sT (1); � � � ; sT (N)]T 2 C
Nd�1 ,A(�; �) = [a(�1; �1); � � �

; a(�d; �d)]
is the array steering matrix in the near-�eld case

which is known as a function of unknown set of pa-

rameters f�; �g and a(�i; �i) is the i
th array steering

vector in the following form

a(�i; �i) =

2666666666664

ej(kmin�i+k
2
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�i)

...

1

ej(�i+�i)
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...

ej(kmax�i+k
2
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�i)

3777777777775
: (2)

The following assumptions are imposed on (1):



AS1: The source signal s(tn) is temporally and

spatially uncorrelated circular complex Gaussian ran-

dom process with zero-mean and nonsingular unknown

covariance matrix Ks,

E
�
s(tn)s

H(tm)
�

= KsÆtn;tm

E
�
s(tn)s

T (tm)
�

= 0 for all tn and tm : (3)

where Ætn;tm is the Kronecker delta (Ætn;tm = 1 if tn =

tm and 0 otherwise), (�)H is the conjugate transpose

and (�)T is the transpose of a matrix.

AS2: The additive noise vector n(tn) is temporally

and spatially uncorrelated circular complex Gaussian

process with zero-mean and standart derivative �2 as

E
�
n(tn)n

H(tm)
�

= �2IÆtn;tm (4)

E
�
n(tn)n

T (tm)
�

= 0 for all tn and tm : (5)

AS3: The source signal s(tn) and the noise n(tm) are
uncorrelated for all tn and tm.

Based on the assumptions AS2 and AS3, the

array observations x are Gaussian distributed with

zero-mean and covariance Kx(�; �;Ks), i.e,

Kx(�; �;Ks) = E[x(tn)x
H (tm)] (6)

= A(�; �)KsA
H(�; �) + �2I :

Then joint probability density function of the obser-

vationx = fx(tn); tn = 1; � � � ; Ng given f�; �;Ksg

can be written as follows:

f(x;�; �;Ks) =

NY
tn=1

2��M=2(detKx)
�1=2 (7)
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The joint probability function (7) can also be written

as

f(x;�; �;Ks) = 2��NM=2(detKx)
�N=2 (8)
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where tr is the trace. The negative log-likelihood

function (after discarding unnecessary terms) is

L(x;�; �;Ks) = � ln det(Kx)� (9)

�
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N
tr
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K
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NX
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#
:

AS2 implies that, by the law of large numbers x(tn)
is second-order ergodic, i.e.,

Kx = lim
N!1

bKx = lim
N!1

1

N

NX
tn=1

x(tn)x
H (tn) (10)

where bKx is the sample covariance matrix. Then the

negative log-likelihood function becomes

L(x;�; �;Ks) = � ln det(Kx)� tr
h
K
�1
x

bKx

i
: (11)

Then, the ML estimates of f�̂; �̂g and ŝ are those

which locally minimizes the negative log-likelihood

function (9).

2. CRAM�ER RAO BOUNDS

The CRB provides a lower bound on the error vari-

ance of any unbiased estimators. In particular, it pro-

vides an asymptotic near-�eld source location estima-

tor. The parameter of interest is � = [�T �
T ]T . To

focus on the parameters of interest, we shall use a

concentrated likelihood approach to obtain the CRB
[9]. Then the ijtth element of the Fisher Information

Matrix is given by

Jij(� ) = SNtr
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(12)

where [�]1 is de�ned as the almost sure (a.s.) limit

of [�], and eKx is the concentrated covariance after

substituting the ML estimates bKx for Kx.

The ML estimate of Ks can be obtained asbKs = [AH
A]�1AH bKxA[AH

A]�1 � �2[AH
A]�1

(13)

where we have suppressed the dependence of A on

(�; �). It is well known that bKs ! Ks almost surely

under mild conditions. Concentrating the covariance

Kx with respect to Ks yieldseKx = A bKsA
H + �2I = � bKx�+ �2�c (14)

where

� , A[AH
A]�1AH and �

c
, I�� : (15)

Furthermore, letting @�=@�i be denoted by �i for

any i = 1; � � � ; 2d the following can be obtained 
@ eKx

@�i

!
=�i

bKx�+� bKx�i + �2�c
i : (16)

Using the properties of the projection matrix the fol-

lowings can be obtained

�
c
� = 0 (17)

Kx� = �Kx (18)

tr[�c
i�

c] =
1

2
tr[(�c)2i ] =

1

2
(tr[�c])i = 0 :(19)

Thus, taking the limit N !1 of (16) 
@ eKx

@�i

!
1

= �iKx�+�Kx�i + �2�c
i (20)



and applying (12) give

Jij(� ) = SNtr
�
K
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x
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� K
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Next, we note that

�i = �
c
AiA

y + (AH)yAH
i �

c (22)

where (�)y is the pseudo inverse of (�). If we evaluate

(21), we would obtain
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Finally, the CRB matrix is found to be

CRB =
�2

2SN
Re
n
D
H
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c
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H
KxAKs

�To�1
(26)

where � denotes the element-wise matrix products.

3. SIMULATIONS

To demonstrate the the e�ectiveness and applicabil-

ity of the proposed method, we consider the following

scenario. A Uniform linear array of M = 7 sensors

with inter-element spacing � = �
4
was used to esti-

mate the locations of two sources located at f�1; r1g =
f�50; 1:4�g and f�2; r2g = f200; 3�g. The number of
the snapshots (N) set to 200 and the SNR was varied

from 0 to 20dB. The proposed method was tested for

K = 1000 independent trials. The resulting RMS
errors of the estimated DOAs (in degrees) are shown

in Figure 1 and Figure 2, while the corresponding

RMS errors of the estimated ranges (in units of the

wavelength) are shown in Figure 3 and Figure 4. The

results were compared with the Cramer-Rao Bounds.

Based on the simulation results we made the fol-

lowing observations: -For high SNRs the RMSEs
obtained from simulations becomes almost identical

to the CRB results derived by modifying the results

in [9].

4. CONCLUSIONS

In this paper, we derived CRBs for direction of arrival

and range estimation of near-Field sources.

The Cram�er-Rao bound for the near-�eld location

estimators is provided, obey with the Monte Carlo

simulations showing the performance of the algorithm

based on Unitary Esprit and unconditional ML.
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Figure 1: RMS error of the estimated DOA of source 1
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Figure 2: RMS error of the estimated DOA of source 2
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Figure 3: RMS error of the estimated range of source 1
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Figure 4: RMS error of the estimated range of source 2
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