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Abstract 
 
Intrusion detection is the art of detecting computer abuse and 
any attempt to break into networks. As a field of research, it 
must continuously change and evolve to keep up with new 
types of attacks or adversaries and the ever-changing 
environment of the Internet. To render networks more secure, 
intrusion-detection systems (IDSs) aim to recognize attacks 
within constraints of two major performance considerations: 
high detection and low false-alarm rates. It is also not enough 
to detect already-known intrusions, yet-unseen attacks or 
variations of those known present a real challenge in the 
design of these systems. IDSs are firmly entrenched on the 
security front but the exact role they can play and what their 
deployment entails must be clear to planners of security. Nine 
artificial neural networks (ANN) based IDS were implemented 
and tested with three experiments with three topologies. The 
results showed that: (i) in average the modular neural network 
(MNN) provided the best results in experiment#3; about 
99.60%; (ii) in average multilayer perceptron (MLP) provided 
the best results in experiment#2; 74.71%; (iii) in 
experiment#1; the MNN provided the best results.  
 

1. Introduction 
 

 Recently, the size of Internet and the volume of traffic have 
grown steadily. This expansion and increase in computerization 
generally have also seen a rise in computer misuse and attacks on 
networks. Prevention of such crime is impossible and so, 
monitoring and detection are resorted as the best alternative line of 
defense; the implementation of this process, called intrusion 
detection. It is performed with the aid of dedicated software and 
hardware systems operating on security logs, audit data or 
behavior observations. IDS also needs to process very large 
amounts of audit data and are mostly based on hand-crafted attack 
patterns developed by manual encoding of expert knowledge [1]. 
 
1.1. What is Intrusion Detection? 
  
 With the increase of attacks on computers and networks in 
recent years, improved and essentially automated surveillance has 
become a necessary addition to information technology (IT) 
security. Intrusion detection is the process of monitoring the events 
occurring in a computer system or network and analyzing them for 
signs of intrusions [1]. Intrusions are attempts to compromise the 
confidentiality, integrity and availability of a computer or network 
or to bypass its security mechanisms. They are caused by attackers 
accessing a system from the Internet, by authorized users of the 

systems who attempt to gain additional privileges for which they 
are not authorized, and by authorized users who misuse the 
privileges given to them. 
 
1.2. Main Benefits and Characteristics 
  
 The main benefits of IDS include: (i) detecting attacks and 
other security violations, which have not been prevented by other 
primary protection techniques; (ii) preventing problem-behaviors 
by increasing the perceived risk of discovery and punishment for 
those who would attack or otherwise abuse the system; (iii) 
presenting traces of intrusions, allowing improved diagnosis, 
recovery and corrective measures after an attack; (iv) documenting 
the existing threat from inside and outside a system, permitting 
security management to realistically assess risk and adapt its 
security strategy in response, and (v) acting as quality control for 
security design and implementation (highlighting some 
deficiencies or errors, before serious incidents occur) [2]. 
 Much work has been done to implement these features, so that 
now over 150 commercial, freeware and shareware IDS are 
available. To facilitate evaluation of these solutions, Purdue 
University IDS research project put a list of characteristics for 
good systems: (i) it must run continually without human 
supervision. The system must be reliable enough to allow it to run 
in the background of the system being observed. That is, its 
internal workings should be examinable from outside; (ii) it must 
be fault tolerant in the sense that it must survive a system crash 
and not lose its knowledge-base at restart; (iii) it must resist 
subversion; (iv) the system can monitor itself to ensure that it has 
not been subverted; (v) it must impose minimal overhead on the 
system; (vi) a system that slows a computer to a crawl will simply 
not be used; (vii) it must observe deviations from normal behavior; 
(viii) it must be easily tailored to the system in question. Every 
system has a different usage pattern, and the defense mechanism 
should adapt easily to these patterns, and (ix) it must cope with 
changing system behavior over time as new applications are being 
added. The system profile will change over time; it must be 
adaptable [3].  
 

2. Overview of Detection Techniques 
 

 In general IDSs may be analyzed as misuse/anomaly detection 
and network-based/host-based systems. 
 
2.1. Misuse Detection 
  
 Misuse detection depends on the prior representation of 
specific patterns for intrusions, allowing any matches to them in 
current activity to be reported. Patterns corresponding to known 
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attacks are called signatures, also giving rise to the term signature-
based detection. These systems are unlike virus-detection systems; 
they can detect many known attack patterns and even variations; 
thereof but are likely to miss new attacks. Regular updates with 
previously unseen attack signatures are necessary [4]. 
 
2.2. Anomaly Detection 
  
 Anomaly detection identifies abnormal behavior. It requires the 
prior construction of profiles for normal behavior of users, hosts or 
networks; therefore, historical data are collected over a period of 
normal operation. IDSs monitor current event data and use a 
variety of measures to distinguish between abnormal and normal 
activities. These systems are prone to false alarms, since user's 
behavior may be inconsistent and threshold levels will remain 
difficult to fine tune. Maintenance of profiles is also a significant 
overhead but these systems are potentially able to detect novel 
attacks without specific knowledge of details. It is essential that 
normal data used for characterization are free from attacks [4]. 
 
2.3. Network-Based IDS Systems 
  
 Network-based IDS monitors traffic by capturing and 
analyzing network packets. Advantages of network-based IDSs 
are: (i) the deployment of these systems has little impact on the 
existing network; (ii) little effect on the normal network operation 
and are relatively easy to upgrade, and (iii) robust in the face of 
attacks and can be made invisible to attackers. On the other hand, 
the disadvantages are: (i) during peak-traffic periods some packets 
may go unprocessed and attacks undetected; (ii) encrypted 
information cannot be analyzed; (iii) attack attempts may be 
detected but hosts must usually then be investigated manually to 
determine whether or not they were penetrated and damage 
caused, and (iv) attacks involving fragmentation of packets can 
cause these IDS to crash [5]. 
 
2.4. Host-Based IDS Systems 
  
 Host-based IDS monitors network traffic of a particular host 
and some system events on the host itself. One may be installed on 
each host or simply on some chosen critical ones within a network. 
Advantages of host-based IDSs are: (i) some local events on hosts 
can only be detected; (ii) raw data are available for analysis in 
non-encrypted form, and (iii) software integrity checks can be used 
in the detection of certain types of attack (e.g. Trojan horse). In 
addition, it has the following disadvantages: (i) more complex to 
manage; (ii) may be disabled if host is attacked and compromised; 
(iii) not suitable for network attacks involving distributed scans 
and probes; (iv) can be disabled by overload attacks (e.g. denial of 
service); (v) for large amounts of information to be processed, 
local storage may be necessary, and (vi) use host’s own computing 
resources at a cost to performance [5]. 
 

3. Performance Indices 
 
 Important measures of efficiency of IDSs are false-alarm rates; 
the percentage of time-consuming false positives registered- 
normal data detected falsely as an intrusion and the percentage of 
more dangerous false negatives; intrusions falsely classified as 

normal data. Such measurements do not indicate the human 
workload required in analyzing false alarms generated by normal 
background traffic. Low false-alarm rates combined with high 
detection rates mean; the detection outputs can be trusted [6]. 
 

4. Data Collection 
  
 The Defense Advanced Research Projects Agency (DARPA) 
intrusion-detection evaluation datasets were the original source of 
data most directly relevant to this work. For the 1998 DARPA 
datasets, 7-weeks (about 4 GBytes of compressed binary tcpdump 
data) of training data were accumulated from the multi-system 
testbed, to represent basically normal operation spiced with a 
series of automatically or manually launched attacks. Further 2-
weeks of test data were collected containing additional new and 
novel intrusions [7].  
 The Knowledge Discovery and Data Mining (KDD) Cup 1999 
are the datasets, which were issued for use in the KDD ’99 
Classifier-Learning Competition [8]. This was preprocessed with 
the feature-construction framework MADAM-ID, to produce 
about 5×106 connection records. A connection is defined to be a 
sequence of TCP packets starting and ending at some well-defined 
times, between which data flow to and from a source IP address to 
a destination IP address under some well-defined protocol. Each 
connection is labeled as either normal or with the name of its 
specific attack. A connection record consists of about 100 bytes. A 
10% of the complementary 2-weeks of test data were, likewise, 
preprocessed to yield a further less than half-a-million connection 
records. It was stressed that these test data were not from the same 
probability distribution as the training data and that they included 
specific attack types not found in the training data. A total of 24 
attack types were included in the training data [8, 9]. 
 

5. Attack Categorization 
 

 Simulated attacks were classified, according to actions and 
goals of the attacker. Each attack falls into one of the following: (i) 
Denial-of-service (DoS) have the goal of limiting/denying services 
provided to a user, computer or network; a common tactic is to 
severely overload the targeted system (e.g. SYN flood); (ii) 
Probing have the goal of gaining knowledge of existence or 
configuration of computer system or network; port scans/sweeping 
of a given IP-address range are typically used in this category (e.g. 
IPsweep); (iii) Remote-to-Local (R2L) have the goal of gaining 
local access to a computer or network to which the attacker 
previously only had remote access; e.g. attempts to gain control of 
a user account, and (iv) User-to-Root (U2R) have the goal of 
gaining root/super-user access on a particular computer/system on 
which the attacker previously had user level access; attempts by a 
non-privileged user to gain administrative privileges (e.g. Eject).  

6. KDD Features 
  
 In the KDD'99 data [8], the initial features extracted for a 
connection record include the basic features of an individual TCP  
connection, such as: its duration, protocol type, number of bytes 
transferred and the flag indicating normal or error status of a 
connection. These intrinsic features provide information for 
general network-traffic analysis purposes. Since most DoS and 
Probe attacks involve sending a lot of connections to the host(s) at 
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the same time, they can have frequent sequential patterns, which 
are different to the normal traffic. For these patterns, same host 
feature examines all other connections in the previous 2-secs, 
which had the same destination as the current connection. 
Similarly, same service feature examines all other connections in 
the previous 2-secs, which had the same service as the current 
connection. Temporal and statistical characteristics are referred to 
as time-based traffic features; there are several Probe attacks 
which use a much longer interval than 2-secs (e.g., one minute) 
when scanning hosts or ports; mirror set of host-based traffic 
features were constructed based on a connection window of 100 
connections. The R2L and U2R attacks are embedded in the data 
portions of the TCP packets and may involve only a single 
connection. To detect these, connection features of an individual 
connection were constructed using domain knowledge [10]. These 
features suggest whether the data contains suspicious behavior, 
such as: number of failed logins, successfully logged in or not, 
whether logged in as root, whether a root shell is obtained, etc. In 
general, there are 42 features (including the attack type) in each 
connection record, with most of them taking on continuous values. 
 

7. IDS Classification Techniques 
  
 A brief description of ANN-based classifiers will be presented 
in the following subsections. ANNs are uniquely powerful tool in 
multiple class classification, especially when used in such 
applications where formal analysis would be very difficult. The 
accuracy however of such classifications depends on a variety of 
parameters, ranging from the architecture of the actual neural 
network to the training algorithm of choice [11-15]. 
 
7.1. Multilayer Perceptron (MLP) 
 
 MLP is a layered feed forward networks typically trained with 
static back propagation. These networks have found their way into 
countless applications requiring static pattern classification. Their 
main advantage is that they are easy to use, and that they can 
approximate any input/output map. The key disadvantages are that 
they train slowly, and require lots of training data (typically three 
times more training samples than network weights) [12]. 
 
7.2. Generalized Feed-Forward (GFF) 
 
 GFF networks are a generalization of the MLP such that 
connections can jump over one or more layers. In theory, a MLP 
can solve any problem that a generalized feed-forward network 
can solve [12]. In practice, however, GFF networks often solve the 
problem much more efficiently. It suffices to say that a standard 
MLP requires hundreds of times more training epochs than the 
GFF network containing the same number of processing elements. 
7.3. Modular Neural Network (MNN) 
 
 MNN is a special class of MLP; which processes inputs using 
several parallel MLPs, and then recombine the results. This tends 
to create some structures within the topology, which will foster 
specialization of function in each sub-module. In contrast to MLP, 
MNNs don't have full interconnectivity between their layers. 
Therefore, a smaller number of weights are required for the same 
size network; which tends to speed up training times and reduces 

the number of required training exemplars. There are many ways 
to segment a MLP into modules. It is unclear how to best design 
the modular topology based on the data. Four modular topologies 
were implemented in simulation; but the best one is tabulated [12]. 
 
7.4. Jordan/Elman network (JEN) 

 
 JEN extends MLP with context units, which are processing 
elements that remember past activity. Context units provide the 
network with the ability to extract temporal information from data. 
In JEN; the activity of the first hidden elements are copied to the 
context units. Networks which feed the input and the last hidden 
layer to the context units are also available. Four modular 
topologies were realized; but the best one is tabulated [13]. 
 
7.5. Principal Component Analysis (PCA) Network 
 
 PCA networks combine unsupervised and supervised learning 
in the same topology. PCA is an unsupervised linear procedure 
that finds a set of uncorrelated features principal components 
(PCs) from input data [14]. MLP is supervised network to perform 
nonlinear classification from these components. The number of 
PCs selected will be a compromise between training efficiency 
(few components) and accurate results (too many components). 
 
7.6. Radial Basis Function (RBF) Networks 
 
 RBF networks are nonlinear hybrid networks typically 
containing a single hidden layer of processing elements. The RBF 
layer uses Gaussian transfer functions, rather than the standard 
sigmoidal functions. The centers and widths of the Gaussians are 
set by unsupervised learning rules, and supervised learning is 
applied to the output layer. These networks tend to learn much 
faster than MLP. For standard RBF's, the supervised segment of 
the network only needs to produce a linear combination of the 
output at the unsupervised layer [15]. 
 
7.7. Self Organized Maps (SOM) 
 
 SOM network transforms the input of arbitrary dimension into 
one or two dimensional discrete map. The feature maps are 
computed using Kohonen unsupervised learning. The SOM output 
can be used as input to a supervised network; the key advantage of 
SOM is the clustering produced; which reduces the input space 
into representative features using a self-organizing process [18]. 
 
7.8. Time Lagged Recurrent Networks (TLRNs) 
 
 TLRNs are MLPs extended with short term memory 
structures. Most real-world data contains information in its time 
structure. Yet, most ANNs are purely static classifiers. TLRNs are 
the state of the art in nonlinear timeseries prediction system 
identification and temporal pattern classification; focused topology 
includes the memory kernels connected to the input layer [13]. 
 
7.9. Recurrent Network (RN) 
 
 Fully RN feedbacks the hidden layer to itself. Partially 
recurrent networks start with a fully RN and add a feedforward 
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connection that bypasses recurrency effectively treating the 
recurrent part as a state memory. RNs can have an infinite memory 
depth and thus find relationships through time as well as through 
instantaneous input space [13]. 
 

8. Results 
 
Attributes in KDD are continuous, discrete, and symbolic, with 
significantly varying resolution and ranges. Most classification 
methods are not able to process data in such a format; hence 
preprocessing was required. For training classifiers, duplicates 
were removed; the original 10% labeled training dataset is 494021 
records reduced to 145587 records. Symbolic features like 
protocol-type (3-symbols), service (70-symbols), and flag (11-
symbols) were mapped to integer values ranging from 0 to N-1; 
where N is the number of symbols. Attack names (e.g., Neptune, 
Prel, etc.) and normal labels were: (i) mapped to integer values 
ranging from 0 to 21 (22 attack names) and 22 for normal; (ii) 
mapped to 0 to 4 classes, ‘0’ normal, ‘1’ probe, ‘2’ DoS, ‘3’ U2R,  
and ‘4’ R2L, and (iii) all attacks and normal are mapped to 
“attack” and “normal” respectively. 80% of the dataset used for 
training and 20% for testing. In the tables of results, of zeros 
classification rate; the corresponding category has been removed. 

Three experiments were implemented for each ANN based 
classifier with three topologies. Experiments differ according to 
the number of outputs: (#1) 23 classes (22 attacks and normal); 
(#2) 5 classes (4 attacks and 1 normal), and (#3) 2 classes (attacks 
and normal). Topologies differ in the number of hidden layers: (1) 
one hidden layer (50 units); (2) two hidden layers (50×50), and (3) 
three hidden layers (28×23×23). It should be noted that the number 
of input features is fixed for all cases; 41 features. 
 Results of Experiment#1: Firstly, 23-classes IDS systems were 
implemented to classify each intrusion to one of the learned attack; 
results of this experiment were given in Tables.1 to 9. 
• Results of Experiment#2: In this experiment we implemented 

5-classes IDS to classify each intrusion as belonging to one of 
4 known intrusion classes (probe, DoS, U2R, R2L) and 
normal. The results are given in Tables 10 to 18. 

• Results of Experiment#3: Finally, we implemented a 2-classes 
IDS system, to classify all intrusions as belonging to attack 
class and normal class; results were given in; Tables 19 to 27. 

 
9. Conclusion and Future Work 

 
 Nine types of ANN classifiers were developed to classify TCP 
data to recognize whether a system is under attack. Among all the 
classifiers tested, MNN for experiment#1 and exepriment#3 and 
MLP for experiment#2 delivered highly accurate results. The 
results showed that for all single ANN based classifiers: 
experiment#3 provided perfect detection results, while with 
experiment#1 and #2 the detection results were unsatisfactory. 
Therefore, these two experiments require hybrid multilayer ANN-
based classifiers. 
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Table.1 Results of MLP using experiment #1 
Classes Topology-1 Topology-2 Topology-3
Normal 99.99% 99.99% 99.99%
Neptune 100.00% 99.99% 100.00%
Teardrop 99.41% 99.99% 2.30%

Portsweep 87.62% 71.32% 89.71%
Satan 90.12% 79.00% 00.00%

Warezclient 00.00% 29.82% 00.00%
Table.2 Results of GFF using experiment #1 

Classes Topology-1 Topology-2 Topology-3
Normal 99.87% 99.92% 99.94%
Neptune 99.99% 99.99% 100.00%
Teardrop 00.00% 99.27% 99.14%

Portsweep 00.00% 00.00% 83.42%
Satan 83.54% 00.00% 00.00%
Nmap 10.13% 00.00% 00.00%

Warezclient 53.53% 32.03% 7.39%
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Table.3 Results of PCA using experiment #1 
Classes Topology-1 Topology-2 Topology-3 
Normal 100.00% 100.00% 99.99%
Neptune 00.00% 85.81% 99.98%

Table.4 Results of RBF using experiment #1 
Classes Topology-1 Topology-2 Topology-3 
Normal 99.94% 99.94% 99.92%
Neptune 100.00% 100.00% 100.00%

Table.5 Results of SOM using experiment #1 
Classes Topology-1 Topology-2 Topology-3 
Normal 100.00% 100.00% 100.00% 
Neptune 99.95% 99.96% 99.96%

Satan 29.28% 04.75% 00.00%
Table.6 Results of TLRN using experiment #1 

Classes Topology-1 Topology-2 Topology-3 
Normal 99.94% 99.95% 99.97%
Neptune 99.93% 99.94% 99.96%
Smurf 93.64% 00.00% 00.00%

Teardrop 96.09% 69.19% 00.00%
Portsweep 00.00% 26.32% 00.00%

Satan 00.00% 76.24% 00.00%
Warezclient 00.00% 34.71% 00.00%

Table.7 Results of RN using experiment #1 
Classes Topology-1 Topology-2 Topology-3 
Normal 99.92% 99.96% 99.99% 
Neptune 99.98% 99.93% 99.98% 

Portsweep 00.00% 45.00% 00.00% 
Ipsweep 87.69% 10.04% 00.00% 

Satan 00.00% 79.56% 00.50% 
Table.8 Results of TLRN using experiment #1 

Classes Topology-1 Topology-2 Topology-3 
Normal 99.96% 99.83% 99.93%
Neptune 99.99% 100.0% 99.98%
Smurf 79.82% 81.41% 89.25%

Teardrop 00.00% 99.27% 99.27%
Portsweep 86.32% 86.05% 18.16%
Ipsweep 00.00% 80.49% 78.98%

Imap 00.00% 00.00% 00.00%
Satan 00.00% 66.96% 00.00%

Warezclient 00.00% 90.03% 00.00%
Table.9 Results of JAN using experiment #1 

Classes Topology-1 Topology-2 Topology-3 
Normal 99.91% 99.97% 99.97%
Neptune 99.99% 100.0% 99.99%
Smurf 98.46% 76.10% 00.00%
Pod 00.00% 00.00% 00.00%

Teardrop 00.00% 98.41% 85.09%
Portsweep 88.16% 79.21% 00.00%
Ipsweep 00.00% 78.03% 88.07%

Satan 82.10% 79.00% 00.00%
Warezclient 87.68% 31.69% 06.61%

Table.10 Results of MLP using experiment #2 
Classes Topology-1 Topology-2 Topology-3 
Normal 99.95% 98.80% 99.77% 

DoS 97.78% 98.86% 97.78% 
PRB 92.03% 94.42% 92.03% 
R2L 00.00% 79.46% 83.97% 

Table.11 Results of GFF using experiment #2 
Classes Topology-1 Topology-2 Topology-3 
Normal 99.97% 98.96% 99.79%

DoS 97.66% 98.22% 97.70%
PRB 58.09% 00.00% 00.00%
R2L 00.00% 00.00% 81.76%

Table.12 Results of PCA using experiment #2 
Classes Topology-1 Topology-2 Topology-3 
Normal 99.92% 99.97% 100.00% 

DoS 95.91% 95.84% 89.68%
PRB 00.00% 85.39% 00.00%
R2L 51.10% 00.00% 00.00%

Table.13 Results of RBF using experiment #2 
Classes Topology-1 Topology-2 Topology-3
Normal 99.97% 99.79% 99.55%

DoS 95.61% 95.52% 95.70%
Table.14 Results of SOM using experiment #2 

Classes Topology-1 Topology-2 Topology-3
Normal 100.00% 100.00% 100.00%

DoS 94.11% 94.11% 94.09%
PRB 38.91% 40.94% 40.49%

Table.15 Results of TLRN using experiment #2 
Classes Topology-1 Topology-2 Topology-3
Normal 99.88% 99.85% 99.93%

DoS 97.66% 97.27% 97.68%
PRB 02.33% 86.61% 55.00%
R2L 79.56% 00.00% 00.00%

Table.16 Results of RN using experiment #2 
Classes Topology-1 Topology-2 Topology-3
Normal 99.96% 99.97% 99.90%

DoS 97.69% 97.43% 97.70%
PRB 04.82% 90.31% 64.79%
R2L 00.00% 29.46% 58.92%

Table.17 Results of MNN using experiment #2 
Classes Topology-1 Topology-2 Topology-3
Normal 99.93% 99.79% 99.96%

DoS 97.48% 97.71% 96.18%
PRB 84.47% 81.53% 75.49%
R2L 00.10% 81.06% 00.00%

Table.18 Results of JAN using experiment #2 
Classes Topology-1 Topology-2 Topology-3
Normal 99.71% 99.64% 99.97%

DoS 00.00% 00.00% 05.71%
PRB 97.58% 99.67% 96.45%
R2L 80.46% 79.96% 29.26%

Table.19 Results of MLP using experiment #3 
Classes Topology-1 Topology-2 Topology-3
Normal 99.82% 99.85% 99.73%
Attack 98.12% 98.97% 98.43%

Table.20 Results of GFF using experiment #3 
Classes Topology-1 Topology-2 Topology-3 
Normal 99.81% 99.71% 99.73%
Attack 98.11% 98.96% 98.00%

Table.21 Results of PCA using experiment #3 
Classes Topology-1 Topology-2 Topology-3 
Normal 100.00% 99.43% 99.48%
Attack 00.00% 95.46% 94.88%

Table.22 Results of RBF using experiment #3 
Classes Topology-1 Topology-2 Topology-3 
Normal 98.57% 99.27% 99.07%
Attack 95.52% 94.36% 93.27%

Table.23 Results of SOM using experiment #3 
Classes Topology-1 Topology-2 Topology-3
Normal 100.00% 100.00% 99.99%
Attack 89.47% 89.51% 89.63%

Table.24 Results of TLRN using experiment #3 
Classes Topology-1 Topology-2 Topology-3
Normal 99.77%% 99.79% 99.79%
Attack 97.09% 97.24% 96.55%

Table.25 Results of RN using experiment #3 
Classes Topology-1 Topology-2 Topology-3
Normal 99.28% 99.15% 99.59%
Attack 95.42% 98.17% 97.06%

Table.26 Results of MNN using experiment #3 
Classes Topology-1 Topology-2 Topology-3
Normal 99.50% 99.70% 99.90%
Attack 99.69% 97.48%  94.71%

Table.27 Results of JAN using experiment #3 
Classes Topology-1 Topology-2 Topology-3
Normal 99.31% 99.84% 99.68%
Attack 99.08% 98.36% 97.02%
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