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ABSTRACT 
In this study, Physical Optics Integral is obtained for a 
cylinder fed by a line source for reflection. The phase 
of the integral is written by using vector identities for 
the related geometry. After defining a complex 
variable transform, it is found that the resulting 
integral contains the Debye Asymptotic expansion of 
Hankel functions. Watson Transform of the exact 
solution for the same problem is obtained by 
considering this result. 
 

I. INTRODUCTION 
Electromagnetic scattering from a perfectly conducting 
cylinder is a well examined problem [1], [2]. There are 
two approaches to this problem in literature. The first 
method is the exact solution of Helmholtz equation [3], 
[4]. The slowly convergent series of the solution is 
converted into a complex integral by Watson Transform 
and evaluated by the steepest descent method [5-7]. The 
second approach is the Physical Optics Method [8]. 
According to this method, the current induced by the 
incident magnetic field is considered. This surface current 
flows only on the illuminated surface of the cylinder. The 
field at the shadow region is also obtained by integrating 
this current.    
Bayrakci [9] defined the Plane Wave Spectrum Integral 
for reflection and surface diffraction by using the Pitch 
solution for caustic waves [10]. In this study, surface 
diffraction integral is written with two integral transforms. 
Umul [11] expanded the method for edge diffraction and 
Whispering Gallery Modes. In the related work, the 
values of incidence and reflection angles are taken 
different in the integral and it is proved that the two 
angles are equal at the stationary phase point. The method 
of Plane Wave Spectrum Integral is parallel to the PO, but 
it is obtained from the solution of homogenous Helmholtz 
equation and the geometry of the problem is used in order 
to form the phase and amplitude terms of the integral. 
From this point of view, this integral approach especially 
consideration of the phase function is a new method. 

There isn’t any study or approach in this manner in 
literature.  
In this work Physical Optics Integral is used for the 
calculation of the scattered fields from a perfectly 
conducting cylinder fed by  a line source. The phase of the 
integral is written by using the same method of Bayrakci 
[1] and Umul [2]. The original approach of this study is 
obtaining a complex integral which contains the Debye 
asymptotic expansion of Hankel functions by using a 
complex variable transform. It is found that the resulting 
integral contains the Watson Transform of the exact 
solution for the same problem. As a result it is shown that 
Phiysical Optics integral and exact solution of Helmholtz 
equation are equivalent for perfectly conducting cylinder 
problem.  
A time factor jwte  is assumed and suppressed throughout 
the paper. 
 
II. PHYSICAL OPTICS SOLUTION OF CYLINDER 

PROBLEM 
The geometry of a perfectly conducting circular cylinder 
fed by an electrical line source is considered in Figure 1. 
Vector potential of the reflected electromagnetic wave can 
be written as  
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where 
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esJ  denotes the electrical surface current density 
flowing on the cylinder, induced by the incident 
electromagnetic field radiating from the source. This 
current can be found as                                     
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by using the Physical Optics approximation [8], [12]. 
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Figure 1. Reflection geometry from a perfectly conducting 
circular cylinder 
 
 
In this expression the derivative of the Hankel function 
can be written as, 
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where 1R  is equal to 
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according to the geometry in Figure 1. d is the distance 
between origin and the line source. By using the identity 
of 
 

                              )()2(
1

)2(
0 xH

dx
dH −=                              (5) 

 
one obtains 
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where α  is the incidence angle of the electromagnetic 
waves to the cylinder surface. As a result vector potential 
can be obtained as 
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for the cylinder problem, by using (2) and (6) in (1). 
 

III. REFLECTED WAVE FROM CIRCULAR 
CYLINDER 

The geometry in Fig. 1 is considered. Debye asymptotic 
expansions of Hankel functions in (7) can be written as 
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and 
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for k>>1. Here quantities of 1R  and 2R  can be found as 
 
                               ασ coscos1 adR −=                         (10) 

 
and 
 
                               βγρ coscos2 aR −=                         (11) 

 
according to the geometry in Fig.1[9], [11]. Integral 
expression of the vector potential can be written as 
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by using Debye asymptotic expansions of Hankel 
functions in (7). The integral of (12) will be evaluated 
asymptotically for ∞→k  by the Method of Stationary 
Phase. According to this method, the first derivative of the 
phase function will be equal to zero which will give the 
stationary phase point. Related phase function of (12) can 
be written as 
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where the relation of 
 
                                    'φασ −=                                  (14) 

 
and 
 
                                 'φφβγ +−=                               (15) 

 
can be found from the geometry of Fig.1. By taking the 
first derivative of the phase function as 
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and using sine property of 
 
                              βγρ sinsin a=                              (17) 

 
and 
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one obtains 
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which will be equal to zero at the stationary phase point. 
This point is defined by the relation of 
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which gives the reflection rule from a perfectly 
conducting surface. Second derivative of the phase 
function can be written as 
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which must be considered in terms of 1R  and 2R . At the 
stationary point relations of 
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can be defined. By using (22) one obtains 
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for the stationary point. As a result phase function can be 
found as 
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by taking the first three terms in Taylor expansion for 
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and  amplitude  function  will  be  equal  to 
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as considering the first term of Taylor expansion will be 
sufficient. Integral expression of vector potential can be 
written as 
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where 
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for the stationary point. As a result vector potential is 
found as 
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by making the variable transform of 
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and using the known integral of 
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in integral (27). 
 

IV. TRANSFORM OF PHYSICAL OPTICS 
INTEGRAL TO COMPLEX ν -PLANE 

 
In this section, a complex transform for the vector 
potential integral will be defined in order to express the 
scattered field in terms of Hankel functions. For this 
purpose, the integral expression of (12) can be written as 
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at the stationary phase point. The complex transform of 
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can be defined. A term of 
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which is equal to zero, will be added to the phase function 
of (32). The related function can be written as    
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by adding the transform of (33). The amplitude function 
will be equal to 
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and as a result one obtains zA  as 
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which gives the Watson transform of exact solution of a 
perfectly conducting circular problem [6]. 
 

V. CONCLUSION 
In this work, it is proved that exact solution of scattering 
problems can also be obtained from Physical Optics 
Method. It is obvious that it is impossible to obtain the 
exact solution for some diffraction problems, e.g. non-
local surfaces. But this kind of problems can be solved 
easily with the spectrum integral method and the scattered 
fields can be evaluated by analytical methods [9], [11]. 
  It is interesting to note that, by using a complex variable 
transform, it is found that the resulting integral contains 
the Debye Asymptotic expansion of Hankel functions for 
the cylinder problem. Watson Transform of the exact 
solution for the same problem is obtained by considering 
this result. 
 

 
Fig 2 Scattered fields from a perfectly conducting cylinder 
using Physical Optics Integral and Exact Solution 
Methods 
 
In Figure 2, it can be seen that Physical Optics and exact 
solution of perfectly conducting cylinder problem gives 
nearly the same graphics. The electrical radius of the 
perfectly conducting cylinder is taken as 5 m. The source 
is 10 m. away from the cylinder. As a result the exact 
solution of curved geometries can be obtained from the 
correct evaluation of Physical Optics integral. 
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