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ABSTRACT

In this study, Physical Optics Integral is obtained for a
cylinder fed by a line source for reflection. The phase
of the integral is written by using vector identities for
the related geometry. After defining a complex
variable transform, it is found that the resulting
integral contains the Debye Asymptotic expansion of
Hankel functions. Watson Transform of the exact
solution for the same problem is obtained by
considering this result.

I. INTRODUCTION

Electromagnetic scattering from a perfectly conducting
cylinder is a well examined problem [1], [2]. There are
two approaches to this problem in literature. The first
method is the exact solution of Helmholtz equation [3],
[4]. The slowly convergent series of the solution is
converted into a complex integral by Watson Transform
and evaluated by the steepest descent method [5-7]. The
second approach is the Physical Optics Method [8].
According to this method, the current induced by the
incident magnetic field is considered. This surface current
flows only on the illuminated surface of the cylinder. The
field at the shadow region is also obtained by integrating
this current.

Bayrakci [9] defined the Plane Wave Spectrum Integral
for reflection and surface diffraction by using the Pitch
solution for caustic waves [10]. In this study, surface
diffraction integral is written with two integral transforms.
Umul [11] expanded the method for edge diffraction and
Whispering Gallery Modes. In the related work, the
values of incidence and reflection angles are taken
different in the integral and it is proved that the two
angles are equal at the stationary phase point. The method
of Plane Wave Spectrum Integral is parallel to the PO, but
it is obtained from the solution of homogenous Helmholtz
equation and the geometry of the problem is used in order
to form the phase and amplitude terms of the integral.
From this point of view, this integral approach especially
consideration of the phase function is a new method.

There isn’t any study or approach in this manner in
literature.

In this work Physical Optics Integral is used for the
calculation of the scattered fields from a perfectly
conducting cylinder fed by a line source. The phase of the
integral is written by using the same method of Bayrakci
[1] and Umul [2]. The original approach of this study is
obtaining a complex integral which contains the Debye
asymptotic expansion of Hankel functions by using a
complex variable transform. It is found that the resulting
integral contains the Watson Transform of the exact
solution for the same problem. As a result it is shown that
Phiysical Optics integral and exact solution of Helmholtz
equation are equivalent for perfectly conducting cylinder
problem.

A time factor e is assumed and suppressed throughout
the paper.

Il. PHYSICAL OPTICS SOLUTION OF CYLINDER
PROBLEM

The geometry of a perfectly conducting circular cylinder

fed by an electrical line source is considered in Figure 1.

Vector potential of the reflected electromagnetic wave can

be written as
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where J denotes the electrical surface current density

flowing on the cylinder, induced by the incident
electromagnetic field radiating from the source. This
current can be found as
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by using the Physical Optics approximation [8], [12].
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Figure 1. Reflection geometry from a perfectly conducting
circular cylinder

In this expression the derivative of the Hankel function
can be written as,
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according to the geometry in Figure 1. d is the distance
between origin and the line source. By using the identity
of
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where a is the incidence angle of the electromagnetic
waves to the cylinder surface. As a result vector potential
can be obtained as
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for the cylinder problem, by using (2) and (6) in (1).

11l. REFLECTED WAVE FROM CIRCULAR
CYLINDER
The geometry in Fig. 1 is considered. Debye asymptotic
expansions of Hankel functions in (7) can be written as
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for k>>1. Here quantities of R, and R, can be found as

R, =dcoso —acosa (10)

and

R, = pcosy—acos B (11)
according to the geometry in Fig.1[9], [11]. Integral
expression of the vector potential can be written as
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by using Debye asymptotic expansions of Hankel
functions in (7). The integral of (12) will be evaluated
asymptotically for k — o by the Method of Stationary
Phase. According to this method, the first derivative of the
phase function will be equal to zero which will give the
stationary phase point. Related phase function of (12) can
be written as
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where the relation of
g=a-¢ (14)
and
y=B-¢+¢ (15)

can be found from the geometry of Fig.1. By taking the
first derivative of the phase function as
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and using sine property of
psiny =asin 8 @an

and
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one obtains
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which will be equal to zero at the stationary phase point.
This point is defined by the relation of

a, =B, (20)
which gives the reflection rule from a perfectly

conducting surface. Second derivative of the phase
function can be written as
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which must be considered in terms of R, and R,. At the
stationary point relations of

R1 | = |0 and R,|=I (22)
can be defined. By using (22) one obtains
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for the stationary point. As a result phase function can be
found as
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by taking the first three terms in Taylor expansion for
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and amplitude function will be equal to
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as considering the first term of Taylor expansion will be
sufficient. Integral expression of vector potential can be
written as
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for the stationary point. As a result vector potential is
found as
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and using the known integral of
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in integral (27).

IV. TRANSFORM OF PHYSICAL OPTICS
INTEGRAL TO COMPLEX V -PLANE

In this section, a complex transform for the vector
potential integral will be defined in order to express the
scattered field in terms of Hankel functions. For this
purpose, the integral expression of (12) can be written as
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at the stationary phase point. The complex transform of

cosa d¢g (32)
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can be defined. A term of
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which is equal to zero, will be added to the phase function
of (32). The related function can be written as

(35)
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by adding the transform of (33). The amplitude function
will be equal to

f= — 36
[(kp)? = v?*[(kd)? - v?]" 9

and as a result one obtains A, as



e-J'kf//

_ A,
A =20 dv (37)
877 ¢ [(kp)® —v’]*[(kal)? —v?]*
which gives the Watson transform of exact solution of a
perfectly conducting circular problem [6].

V. CONCLUSION

In this work, it is proved that exact solution of scattering
problems can also be obtained from Physical Optics
Method. It is obvious that it is impossible to obtain the
exact solution for some diffraction problems, e.g. non-
local surfaces. But this kind of problems can be solved
easily with the spectrum integral method and the scattered
fields can be evaluated by analytical methods [9], [11].

It is interesting to note that, by using a complex variable
transform, it is found that the resulting integral contains
the Debye Asymptotic expansion of Hankel functions for
the cylinder problem. Watson Transform of the exact
solution for the same problem is obtained by considering
this result.

0.045 T T T T

( Physical Optics
Solution
(o) Exact Solution

0.04

0036

0.03F

002ar

noz2r

oolaf

001 F

0.005
1]

Fig 2 Scattered fields from a perfectly conducting cylinder
using Physical Optics Integral and Exact Solution
Methods

In Figure 2, it can be seen that Physical Optics and exact
solution of perfectly conducting cylinder problem gives
nearly the same graphics. The electrical radius of the
perfectly conducting cylinder is taken as 5 m. The source
is 10 m. away from the cylinder. As a result the exact
solution of curved geometries can be obtained from the
correct evaluation of Physical Optics integral.
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