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ABSTRACT 
In this study, An adaptive FIR filtering approach , 
which is referred to as the amplitude and phase 
estimation of a sinusoid (APES) is presented. We also 
describe how to apply the FIR filtering approaches to 
inverse synthetic aperture radar imaging. We show 
numerical examples that APES can yield more 
accurate spectral estimates with much lower sidelobes 
and narrower spectral peaks than inverse fast Fourier 
transform (FFT) method.  We also applied one 
dimension APES which performs APES algorithm to 
rows and columns separately for imaging.  
 

I. INTRODUCTION 
 
The classical approaches to spectral estimation include the 
discrete Fourier transform (DFT), and its variants which 
are typically based on smoothing the spectral estimate or 
windowing the data [1], [2]. Another matched-filter bank 
(MAFI) spectral estimation method is CAPON [3]. The 
APES is known to have better statistical performance than 
the Capon. It has been found to outperform the Capon 
estimator in applications such as continuous-spectrum 
estimation, radar image feature extraction, synthetic 
aperture radar imagery, etc.  It has been suggested that the 
performance superiority is in part because the Capon is 
biased downward, whereas the APES is unbiased [6]  
APES can be interpreted as adaptive finite impulse 
response (FIR) filtering based approaches to spectral 
estimation. 
 
In this paper, we present an adaptive finite impulse 
response (FIR) filtering approach, which is referred to as 
the amplitude and phase estimation of a sinusoid (APES) 
algorithm, for inverse synthetic aperture radar (ISAR) 
imaging for point scatterers, which have different 
amplitude and coordinate.  

The matched filter bank estimators have received 
considerable attention in a variety of applications 
including target range signature estimation and synthetic 
aperture radar (SAR) imaging. It is well known that APES 
can yield more accurate spectral estimates with much 
lower sidelobes and narrower spectral peaks than the fast 
Fourier transform (FFT) method, which is also a special 
case of the FIR filtering approaches [4].    
 
 We compare the results obtained by one dimension APES 
(1D-APES, two dimension APES (2D-APES) methods 
and fast Fourier transform (FFT). We show by means of 
situational examples the APES methods can provide more 
accurate spectral estimates, narrower spectral peaks and 
lower sidelobe levels than the fast Fourier transforms 
method (FFT). 
 

II. PROBLEM FORMULATION  
 

Direct Problem: Calculation of Scattered Signal 
for Given Reflectivity Distribution. 
Let’s assume N scatterer located the positions (x1,y1), 
(x2,y2), …..(xN,yN) respectively. This area is illuminated 
by radar to obtain reflectivity image of the observed area. 
Under the far field conditions, incident field is assumed to 
be plane wave.  
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     Figure 1. Geometry of imaging scenario. 



The position vector of n. scatterer, according to Oxy 
coordinate system in fig.1, is given by 
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scatterer is expressed as, 
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Where ru

�
 is unit vector from radar to O point and also 

defines propagation direction. 
 
Let the radar illuminates the scatterer by direction that 
makes iφ  angle with Ox axis depicted in fig.1. Received 
signal is given as, 
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Where k is defined as, 
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Where f is operation frequency, c is speed of light and  
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22 / re krj−  term contains attenuation and constant phase 

rotation which does not change with kx and ky, so this 
term can be omitted. 
 
For continuous target, obtained signal is given by 
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In practice, radar sends pulses whose pulse duration is τ  
with modulation frequency f0, so it has bandwidth 
approximately τ/B 1= . Observing the target with different 
observation directions and frequency value, one obtains 
Fourier transform of reflectivity of target in discrete 
points.  
 
Inverse Problem: Calculation of Reflectivity 
Image of Observed Object for Given Scattered 
Signal 
 
As expressed in direct problem, scattered signal is Fourier 
transformation of reflectivity distribution, so classical 
approach for obtaining ),( yxσ is inverse Fourier 

transformation of ),( yx kks . However, operational 

limitation such as limited bandwidth of radar and 
observation directions, one obtains Fourier transform of 

),( yxσ not for all yx kk ,  but discrete limited values. 

Using computers, inverse Fourier transform can be 
performed using fast Fourier transform algorithm (IFFT). 
Because of these, Classical IFFT cause low resolution and 
high sidelobe level. Some windowing functions is used 
for suppressing sidelobe level, but these methods cause 
resolution decreasing. 
 
In APES method, spectrum estimation of reflectivity is 
improved and high resolution can be obtained. 
 
We begin with a dataset ),( nmY  of size [M x N].  In 
this case, we are interested in using a two-dimensional set 
of either filter or prediction coefficients of size [p x q].  In 

order to perform the inversion of R̂ , it is necessary that 

pq < MN/2, otherwise the rank of R̂  which is ≤  (N – 

q)(M - p) will be less than the dimension of R̂ , which is 
pq [1]. 
 
The forward covariance matrix will be determined as 
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where the sub-matrix of data y is defined as 
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where R̂  is defined as, 
 
The vec[.] operation consists of stacking the columns of 
data on top of each other.  The operator (.)H is the 
complex conjugate transpose of the matrix.  Next, we find 
the backward covariance matrix with the operation 
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where J  is the exchange matrix (the identity matrix 

flipped left-to-right) of the same size as FR̂ .  This 

operation is equivalent to flipping FR̂  up-down and then 
left-right.  The combined forward-backward covariance 
matrix is then found simply as 
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we are given a dataset ),(_ nmY  of size [M x N], and 

wish to use an estimator with a filter coefficient matrix of 
size [p x q].  We then define the quantity 
 

[ ( , ) ( , ) ( , ) ( , )]ˆ ˆ( , )
( 1)( 1)

H H
x y x y x y x y

x y

g w w g w w g w w g w w
Q w w R

M p N q

+
= −

− + − +
� �

 
      (12) 

where R̂  is defined as in (11), and the vectors [ , ]g g� are 
defined as 
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with y as in (9) and y� is simply 
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We then take the inverse of Q̂  (which can be shown to 

exist since the inverse of R̂  exists, being Hermitian and 
positive definite).  Next, we need to define the vectors 
 

, ( , ) ( ) ( )p q x y p x q ya w w a w a w= ⊗   (15) 
 
Where 
 

( 1)( 1)( ) [1 ], ( ) [1 ]y yx x jw jw qjw jw p
p x q ya w e e a w e e −−= =� �

 
      (16) 
 

The ⊗ operator is the Kronecker product of the vectors.  
Finally, the expression for the APES spectral estimator is 
given by 
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This quantity must be computed for each two-dimensional 
frequency pair ),( yx ww .  Thus, if implemented directly, 

the APES estimator would not be very efficient. 
 

 
III. EXPERIMENTAL RESULTS  

 
As an example, we compared the ISAR images of discrete 
point scatterers obtained by IFFT, 1-D APES and 2-D 
APES. 1-D APES performs APES algorithm to rows and 
column separately. Positions and amplitudes of the 
scatterers is given as fallows, 
 
      xs(1)=-12; ys(1)=12;   as(1)=3; 
      xs(2)=-9;  ys(2)=-6;   as(2)=2; 
      xs(3)=-9;  ys(3)=6;    as(3)=1; 
      xs(4)=-6;  ys(4)=9;    as(4)=2; 
      xs(5)=3;   ys(5)=-9;   as(5)=1; 
      xs(6)=3;   ys(6)=-3;   as(6)=1; 
      xs(7)=6;   ys(7)=-6;   as(7)=1; 
      xs(8)=6;   ys(8)=9;    as(8)=2; 
      xs(9)=9;   ys(9)=-3;   as(9)=1; 
       
 

 
          
            Fig.2-) Positions and amplitudes of the scatterers  
 

 
 

      Fig.3-) ISAR image of scatterers using IFFT algorithm 



 
         

Fig.4-) SAR image of scatterers using 1-D APES algorithm 
                

 
 

Fig.5-) SAR image of scatterers using 2-D APES algorithm 
 

 
IV. CONCLUSION 

 
We have presented an adaptive FIR filtering approach 
which is the APES spectral estimation method. We have 
compared the APES method with IFFT and also we 
compared the 1-D APES with the 2-D APES method. We 
have shown by means of experimental examples that the 
APES method can yield better resolution with much lower 
sidelobes and narrower spectral peaks than IFFT, which is 
also a special case of the FIR filtering approaches (see 
fig3 and fig.5). And also we have shown that 2-D APES 
gives more accurate spectral estimates and better result 
than the 1-D APES method. 
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