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Abstract
Brain-computer interfaces (BCIs) provide a way to
monitor and treat neurological diseases. An im-
portant application of BCIs is the monitoring and
treatment of epilepsy, a neurological disorder char-
acterized by recurrent unprovoked seizures, symp-
tomatic of abnormal, excessive or synchronous neu-
ronal activity in the brain. BCIs contain an array
of sensors that gather and transmit data under the
constrains of low-power and minimal data transmis-
sion. Asynchronous sigma delta modulators (AS-
DMs) are considered an alternative to synchronous
analog to digital conversion. ASDMs are non-linear
feedback systems that enable time-encoding of ana-
log signals, equivalent to non-uniform sampling.
An efficient reconstruction of time-encoded signals
can be achieved using a prolate spheroidal wave-
form (PSW) projection. PSWs have finite time sup-
port and maximum energy concentration within a
given bandwidth. The original signal can be recon-
structed from the ASDM time-encoded binary sig-
nal. For transmission, we propose a modified or-
thogonal frequency division multiplexing (OFDM)
technique using chirp modulation. Our method gen-
eralizes the chirp modulation of binary streams with
non-uniform symbol duration.

1. Introduction
Acquisition and transmission of data from the brain,
for monitoring or treatment, can be done using an ar-
ray of sensors supported by analog circuitry. Two is-
sues of special interest in the design and implementa-
tion of these brain-computer interfaces (BCI) [1] are
energy management and use of clocks. The power dis-
sipation due to analog to digital conversion and to wire-
less transmission is significant. Furthermore, the pres-
ence of clocks in BCIs is problematic. In conventional
sigma delta modulators, for instance, the required high
frequency clocks may cause electromagnetic interfer-

ence corrupting the analog signal to be sampled [2].
Given the lack of clocks and the low power consump-
tion required in bio-monitoring systems, asynchronous
data acquisition is a viable alternative to analog to dig-
ital conversion [1, 2]. Processing signals without ana-
log to digital converters, multiplexing and transmitting
data from several channels under restrictive power con-
ditions become a challenging problem. Furthermore,
the intended small dimensions of the BCIs impose ad-
ditional storage and computational constrains. The pro-
totype that we propose is shown in Fig. 1, where neural
signals are acquired in the BCI and then transmitted to
a personal assistant device (PDA) which is capable of
processing and transferring data to a server or group of
servers. We are interested in the acquisition and trans-
mission of data in the BCI to the PDA under the men-
tioned constraints.

BCI

PDA

Computer

Figure 1: Brain-computer interface.

Asynchronous sigma delta modulators (ASDMs)
[3] are non-linear feedback systems, without a clock,
that transform amplitude information into time infor-
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mation to represent analog signals in a discrete form.
Their simple circuitry allows them to operate at low
power levels. A band-limited signal can be recon-
structed from the zero crossings of the ASDM binary
signal [2]. In this paper, we present a reconstruction of
the signal by means of the prolate spheroidal waveform
(PSW) projection presented in [4]. This projection is
based in the approximation of the sinc function in terms
of the PSWs giving a lower order representation than
the complex exponential-bases used in [2].
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Figure 2: ASDM-based brain-computer interface.

As shown in Fig. 2, the neural signals from dif-
ferent sensors are processed by ASDMs, multiplexed
and transmitted via the skin to a PDA. The power con-
sumption in the transmission can be reduced by using
the skin as a short-range communication channel [5].
However, the non-uniformity of the zero-crossings of
the time-encoded signals makes otherwise very efficient
methods such as Orthogonal Frequency Division Mul-
tiplexing (OFDM) not applicable. We propose a combi-
nation of chirp and localized modulation of the ASDM
time-encoded signals to achieve an efficient transmis-
sion with a modified OFDM system. OFDM is a multi-
carrier communication technique that divides the bit
stream into sub-streams that are more efficiently trans-
mitted. Given that the communication channel is mod-
eled as a linear time-varying system, chirp modulation
and time-frequency processing of the signals in such a
system is more appropriate than the conventional linear
time-invariant modeling and Fourier domain processing
[6].

A sequence of ortho-normal chirps can be used to
transmit multichannel data in an efficient way and with
robustness to additive noise. In [6, 7] it is shown that the
transmission of a sequence of binary symbols {bu(t)},
u = 1, · · · , U , with uniform duration of T seconds
and corresponding to U users, can be efficiently done
by modulating each of the binary signals with a set
of ortho-normal chirps. The orthonormality of these
chirps can be obtained using the kernel of the fractional
Fourier transform (FrFT) [8]. If the symbol duration
is not constant, the ortho-normality of the chirps is not

sufficient to recover the transmitted signal from a mul-
tiplexed version of it. As we will show it is necessary to
create a localized set of chirps capable of representing
each of the non-uniform pulses.

2. Asynchronous Data Acquisition
In this section, we will show how the data collection
in the BCI can be accomplished without a clock using
ASDMs, and how the data can be used to reconstruct
the neural signal.

2.1. Asynchronous Sigma Delta Modulators

An ASDM is a nonlinear feedback system that oper-
ates at low power. It can be used to time encode a
band-limited analog signal into a continuous-time sig-
nal with discrete amplitudes. The zero-crossing times
of this signal permit recovery of the original signal. An
ASDM is similar to a synchronous sigma-delta mod-
ulator but it differs in that no sampling is done in the
ASDM and as such no quantization noise is input into
the modulator. Recently, the ASDM shown in Fig. 1,
consisting of an integrator and a non-inverting Schmitt
trigger, has been proposed for bio-monitoring [2]. This
type of ASDM transforms amplitude information into
time information by the limit cycles of the non-linear
component.
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Figure 3: Example of ASDM.

The operation of the ASDM in Fig. 3 can be related
to the non-uniform sampling of a band-limited signal
x(t). To reconstruct x(t) from non-uniform samples re-
quires knowledge not only of the samples of the signal
but also of the times at which they occur. Although re-
construction from non-uniform samples can be posed as
a generalization of the sinc interpolation of the Nyquist-
Shannon sampling theorem, the problem is not well de-
fined due to the infinite dimension of the matrices and
vectors involved, and to the ill-conditioning of the ma-
trix with sinc entries.

Perfect reconstruction of x(t) from non-uniform
samples can be achieved provided that the time se-
quence {tk} at which the samples occur satisfies the
condition [2]:

max
k

(tk+1 − tk) ≤ TN (1)
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where TN = π/Ωmax is the Nyquist sampling period.
In [2] it has been shown that the input signal x(t) of the
ASDM can be reconstructed from the zero-crossings of
the binary output signal z(t). Indeed, for a bounded
signal x(t)

|x(t)| ≤ c < b (2)

for a certain value of κ the output of the integrator, y(t),
is also bounded, i.e., |y(t)| < δ for all t, and the output
of the feedback system is binary, z(t) = b(−1)k+1,
tk ≤ t ≤ tk+1. If at a time tk+1 > tk the output of
the integrator is y(tk+1) − y(tk) = ±2δ and z(tk) =
b(−1)k+1, then we have

y(tk+1)− y(tk) =
1
κ

∫ tk+1

tk

x(τ)dτ

−b(−1)k+1(tk+1 − tk)

After replacing the left hand-side term by ±2δ, it be-
comes∫ tk+1

tk

x(τ)dτ = (−1)k [−b(tk+1 − tk) + 2κδ] (3)

Furthermore, from |x(t)| ≤ c and condition (1) we have

2κδ
b+ c

≤ tk+1 − tk ≤ 2κδ
b− c

≤ TN (4)

which gives us the way to choose the parameters δ, and
κ in terms of the Nyquist sampling rate.

3. Slepian Reconstruction
According to the Whittaker–Kotel’nikov–Shannon-
Nyquist sampling theory [9] a band-limited signal can
be reconstructed from uniformly taken samples by a
sinc interpolation. The problem with this is that not
only the band-limited condition is idealized, but the use
of sinc function of infinite support in time is not the ap-
propriate functions to represent finite support signals.
In [4] we have shown that the Prolate Spheroidal Wave
Functions (PSWF), or Slepian functions, are more ap-
propriate for sampling signals of finite time support
and essentially band-limited, while reducing the num-
ber of samples for reconstruction. The Slepian func-
tions {sk(t)} have finite time support, and their energy
is optimally concentrated in a frequency band. Figure 4
display some of these functions and their Fourier trans-
forms.

Using the connection of the Slepian functions with
the sinc function, the sinc interpolation can be con-
verted into a finite Slepian projection of finite dimen-
sion L, in turn related to the time-frequency product of
the signal. In general, L < Nn, where NN is the num-
ber of samples required by the Nyquist criteria [4]. The
projection of a signal x(t) is given as

x(tk) = Φ(tk)γL (5)
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Figure 4: Slepian functions and their Fourier trans-
forms.

where Φ(tk) is a matrix with entries Slepian functions
computed at the uniform times {tk}, and γL are the pro-
jection coefficients. If the a non-uniform sampling, e.g.,
jitter sampling, occurs so that {t̂k} is a subset of {tk},
then the measurements are given as

x(̂tk) = Φ(̂tk)γL (6)

where Φ(̂tk) is random because of the nature of the
sampling. Due to this, we find the coefficients by means
of the pseudoinverse

γL =
[
Φ(̂tk)

]†
x(̂tk) (7)

which are then used to reconstruct the signal. As an ex-
ample, consider the reconstruction of a sub-dural EEG
signal shown in Fig. 5.

0 1 2 3 4 5 6 7 8 9 10

−1000

−500

0

500

1000

(a)

0 1 2 3 4 5 6 7 8 9 10

−1000

−500

0

500

1000

(b)

0 1 2 3 4 5 6 7 8 9 10

−1000

−500

0

500

1000

t (sec)

(c)

Figure 5: Reconstruction from non-uniform samples:
original signal (top), reconstructed signal and error.

3.1. Reconstruction from ASDM output

The train of rectangular pulses z(t) displays non-
uniform zero-crossing times that depend on the input
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signal amplitude. The reconstruction of the neural sig-
nal x(t) can be done by approximating the integral by
the trapezoidal rule using Δ = (tk+1 − tk)/D for an
integer D > 1 (the larger this value the better the ap-
proximation), we have that

∫ tk+1

tk

x(τ)dτ ≈ Δ

[
x(tk)
2

+
D−1∑
�=1

x(tk + �Δ)

+
x(tk+1)

2

]

We then obtain the following reconstruction algorithm:

(i) v = Qx = QPγ

(ii) γ = [QP]†v
(iii) x = Pγ

where v is the right term in (3), Q is the matrix for the
trapezoidal approximation, x = Pγ is the PSW pro-
jection, and † indicates pseudo-inverse. Thus the signal
x(t) can be reconstructed from the zero crossings {tk}
of the output of the ASDM z(t).

4. Chirp OFDM for ASDM Signals
Consider then the transmission of binary signals
{zn(t)}, n = 1, · · · , N from an array of N ASDMs
conforming a BCI. These signals need to be transmitted
in the most efficient way from the BCI to an intermedi-
ate personal digital assistant (PDA) capable of trans-
mitting the signal to a server where the signal analysis
is performed. Each of the signals to transmit is a train
of pulses with non-uniform zero-crossings. We explore
the application of OFDM using orthonormal chirp basis
for the modulation of the N time-encoded signals.

4.0.1. Uniform symbol period

Chirp modulation has been applied successfully in
OFDM [6, 7], a multi-carrier technique that transmits
data by dividing the bit stream into several parallel
streams. This chirp modulation has been shown to miti-
gate the effects of the channel Doppler frequency shifts
(due to a moving receiver or transmitter) and to be ro-
bust to the presence of noise in the transmitted signal.
In the transmission of source symbols +1 or −1 with a
uniform period T , if we have ortho-normal chirps ck(t)
for users k = 1, · · · , U the baseband transmitted signal
for user k is given by

sk(t) = bk(t)ck(t) (8)

where bk(t) is either 1 or −1 for t0 ≤ t ≤ t0 + T .
Assuming perfect synchronization between transmitter
and receiver, and that the only channel effect is addition

of Gaussian noise η(t), the baseband received signal is

r(t) =
U∑

k=1

sk(t) + η(t) (9)

To recover the source symbols, multiplying the received
signals by the conjugate of the chirps, c∗k(t), we obtain
a decision variable for user k, yk, by integrating over a
period and using the orthogonality of the chirp signals:

yk =
∫ t0+T

t0

r(t)c∗k(t)dt

=
U∑

n=1

bn(t)
∫ t0+T

t0

[cn(t)c∗k(t)dt+ η(t)c∗k(t)]dt

= bk(t) +
∫ t0+T

t0

η(t)c∗k(t)dt

in t0 ≤ t ≤ t0+T . The value bk(t), which is either 1 or
−1, is estimated by a thresholder. The ortho-normality
of the chirps mitigates the multiple-access interference
caused by users different from the user we are interested
in.

Consider a set of frequency-modulated linear chirps
{ck(t)} with instantaneous frequencies

φk(t) = θt+ 2fk k = 1, · · · , U (10)

where θ is the chirp rate, common to all the chirps, and
fk = k/T is a multiple of the frequency corresponding
to the symbol period T . The chirps are given by

ck(t) = ejπtφk(t) = ejπθt2ej2πfkt

The orthonormality of the chirps {ck(t)} depends on
the orthonormality of the {ej2πfkt} terms. Indeed, the
common chirp rate makes it so that

1
T

∫ t0+T

t0

ck(t)c∗n(t)dt =
1
T

∫ t0+T

t0

ej2π(fk−fn)tdt

=
{

1 k = n
0 k �= n

(11)

In [6, 7] the orthonormal chirps are obtained from the
properties of the kernel of the fractional Fourier trans-
form, but such relation is unnecessary as shown above.

4.0.2. Non-uniform symbol period

Applying the chirp-modulated OFDM for the transmis-
sion of the time-encoded signals obtained from N AS-
DMs is complicated by the fact that the pulses, corre-
sponding to the symbols, do not have a uniform period
as before. Figure 6 illustrates the ASDM output corre-
sponding to an arbitrary signal.

In this case we will again consider chirps with a
common chirp rate θ, but with frequencies fn = 1/T̂
where

T̂ = min{Tn(k)}
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Figure 6: Output of ASDM for arbitrary signal. Notice
the non-uniform duration of the pulses.

and Tn(k) = tn(k + 1) − tn(k) are the time intervals
from the signals {zn(t), n = 1, · · · , N}. The band-
width allocated to the nth-ASDM, Fn = fn+1 − fn, is
divided into M sub-bands with frequencies

fn(m) = fn +
Fn

M
m m = 0, · · · ,M − 1 (12)

Using these frequencies and the zero crossings {tn(k)}
from zn(t) we create an array of chirps with instanta-
neous frequencies

φn,m(t) = θt+ 2fn(m) (13)

when t ∈ [tn(m), tn(m + 1)] and −∞ otherwise (so
that the chirp is zero outside [tn(k), tn(k + 1)] ). Thus
the chirp

cnm(t) = ejπtφnm(t) = ejπθt2ej2πfn(m)t (14)

for tn(m) ≤ t ≤ tn(m+ 1) and zero otherwise.
Considering an analysis time segment t0 ≤ t ≤

t0 + Tf , where Tf = βT̂ for a small integer β, the
orthonormality of the chirps cnm(t) is kept by the com-
mon chirp rate and by the orthogonality of the complex
exponentials with frequencies {fn(m)}. Each consec-
utive pulse in zn(t) is multiplied by a chirp with an in-
creasing frequency fn(m).

Assuming again that the effect of the channel is only
the addition of Gaussian noise, the received signal is
now

r(t) =
N∑

n=1

M−1∑
m=0

snm(t) + η(t)

=
N∑

n=1

M−1∑
m=0

zn(t)cnm(t) + η(t) (15)

Multiplying this signal by e−jπθt2 gives

y(t) = r(t)e−jπθt2 =
N∑

n=1

M−1∑
m=0

zn(t)ej2πfn(m)t

+ η(t)e−jπθt2 (16)

and when we pass this signal through a band-pass filter
of bandwidth Fn gives

ỹn(t) =
M−1∑
m=0

zn(t)ej2πfn(m)t + η̃(t) (17)

which is a combination of sinusoids in the bandwidth
assigned to channel n, and η̃(t) is the noise within that
band-width.

If we express zn(t) for t0 ≤ t ≤ t0 + Tf as a con-
catenation of rectangular pulses using the unit-step sig-
nal u(t) and let d� = ±1 for the subchannels being
occupied and zero for those that are not, we get

zn(t) =
M−1∑
�=0

d�[u(t− tn(�+ 1))− u(t− tn(�))]

The Fourier transform of zn(t) is

Zn(ω) =
M−1∑
�=0

d�

∫ tn(�+1)

tn(�)

e−jωtdt (18)

and then the Fourier transform of ỹn(t) is given by

Ỹn(ω) =
M−1∑
m=0

Zn(ω − 2πfn(m)) + η̃(ω)

If we filter Ỹn(ω) with a band-pass filter of center fre-
quency fn(m) and determine the value of this function
at the frequencies fn(m), for m ∈ [0, · · · ,M − 1] we
obtain

Ŷn(fn(m)) = Zn(0) + η̃(fn(m))
= dm [tn(m+ 1)− tn(m)]

+η̃(fn(m)) (19)

so that |Ŷn(fn(m))| ≈ tn(m + 1) − tn(m). We thus
have that for the m-subchannel in the nth-ASDM out-
putl with high signal to noise ratio the corresponding
period is

Tn(m) = tn(m+ 1)− tn(m)

and the magnitude of Ŷn(fn(m)) is dm.

4.0.3. Simulations

The transmission of four outputs {zn(t), n =
1, 2, 3, 4}, assumed to come from arbitrary signals, is
illustrated in Fig. 3. To illustrate the performance of
our procedure a Monte Carlo simulation with 500 trials
for each signal to noise ratio (SNR) between −10 and
10 dBs (with increments of 5 dBs) was implemented.
Gaussian noise is added to the chirp-modulated sig-
nal to obtain the different SNR’s. The binary signals
{zn(t), n = 1, 2, 3, 4} in a window of 4 msec are
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shown in the top plot of Fig. 3 displaying different
widths for the two pulses in each zn(t). The magnitudes
|Ŷn(fn(m))| corresponding to different frequencies in
the middle plot are estimates of the width of the pulses
in each of the {zn(t), n = 1, 2, 3, 4}. The axis showing
this information is labeled symbol duration. The hori-
zontal axis displays the frequency at which the chirp
originates. The effect of the noise (this corresponds to
an SNR of 10 dBs) is shown. Thus our algorithm pro-
vides the duration of each of the symbols in seconds
from which we compute the zero-crossing times needed
to reconstruct the original signals in each of the chan-
nels. The plot at the bottom of Fig. 3 displays the error
probability when estimating the width of each of the
pulses in the binary signals for each of the SNR used in
the Monte-Carlo simulation.
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Figure 7: Monte-Carlo simulation for the transmission
of four channel ASDM binary signals {zn(t), n =
1, 2, 3, 4}: (top) non-uniform widths of the binary sig-
nals {zn(t)}; (middle) estimated widths for each of the
pulses in {zn(t), n = 1, 2, 3, 4} when noise is added
(SNR=10 dB); (bottom) error probability of the estima-
tion of the widths for different SNRs.

5. Conclusion
In this paper we consider asynchronous data acquisi-
tion using ASDMs, multiplexing and transmission of
outputs of several channels with ASDMs and their re-
construction. The advantages of using ASDMs are the
low-power consumed and the lack of clocks. For the
transmission of the outputs of a number of ASDMs we
propose using chirp modulation OFDM, which is robust
to Doppler and time-shifting caused by time-varying
channels. Since the conventional approach cannot be
implemented given the non-uniformity of the pulses,
we propose a novel approach that uses a sequence of
localized linear chirps that are orthonormal. The results
are encouraging, especially its robustness to noise. The
neural signals can be recovered by means of a Slepian
interpolation. Connecting our procedure to either Frac-
tional Fourier Transform or to the evolutionary spectral
theory will permits us to investigate the performance
of the proposed chirp OFDM under the constrains of
the channel. We will also like to explore a different ap-
proach where an ASDM and a level crossing system can
be used for the data acquisition and transmission, possi-
bly reducing the overall complexity which is desirable
given the computational constrains of BCIs.
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