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ABSTRACT

Nonlinear electric circuits are used to model dynamic
systems. In order to analyze nonlinear electric circuit
models probabilistic methods can be used. Thus, in this
work the applicability of the probabilistic modeling for
the nonlinear electric circuit models is demonstrated
using illustrative real-world example. UKF algorithm
was successfully used to estimate states from noisy ob-
servation at the nonlinear circuit. If the probabilistic
description of the circuit’s states were known, easily im-
plemented UKF algorithm could be used to analyze the
nonlinear circuits.

1. INTRODUCTION

Nonlinear electric circuits with lumped parameters are
vast and highly researched area and many excellent
contributions have been made. Dynamic systems were
often modeled and simulated by nonlinear elect rical el-
ements [1]. Hidden or unknown state parameter estima-
tion of these models and system identification problems
were investigated by several approaches in the literature
[1, 2, 3]. Probabilistic inference is very suited to the
problem of the dynamic system analysis due to the na-
ture of "uncertainty" and "randomness" of the nonlinear
dynamic systems.

>From the probabilistic point of view the goal of
the modeling manifests itself in the solution of the
distinct problem, with accepting underlying assump-
tions: system parameters and time-varying state esti-
mation by using noisy data series observed at the out-
put of the system. Optimal solution of this problem,
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namely Bayesian Estimation [4]and approximate solu-
tions were explained in detail in [4, 5]. However, al-
though numerous approximate solutions to the estima-
tion problem were proposed in a variety of fields, prob-
abilistic inference wasn’t counted within the nonlinear
electric circuits solution methods. Thus, in this work
the applicability of the probabilistic modeling for the
nonlinear electric circuit models is demonstrated using
illustrative real-world example.

In this work, the recursive probabilistic inference
problem within discrete-time nonlinear dynamic sys-
tem that can be described by a dynamic state-space
model (DSSM) will be addressed. In order to formulate
DSSM equations Kirchhoff voltage and current Laws
can be used in the nonlinear electric circuit analysis.
Although the formulation of the state equations for non-
linear circuits are not straight forward, in many appli-
cations under some restrictions continuous-time tableau
equations can be transformed to discrete-time DSSM
equations in the form as:

xk+1 = F (xk, wk, uk) + qk (1)

yk = H (xk, wk, uk) + r (2)

wk+1 = wk + nk (3)

wherexk represents the unobserved state of the system,
wk is the parameter vector and usually considered as a
Markov process,uk is the known input andyk is the
observed measurement signal. In this work the process
noiseqk ∼ N (0, Qk) and the observation noiserk ∼

N (0, Rk) are assumed to be additive Gaussian noises.
Among the probabilistic models Unscented Kalman

Filter (UKF) model is well suited to the state estimation
problem of nonlinear electric models due to the cou-
ple of reasons. First, being time-varying parameters of



nonlinear electric elements, observation sequences are
termed as dynamic data in which the temporal ordering
is important. For such data the state evaluation dynam-
ics should be considered. Second, UKF can be used in
state estimation, parameter estimation or joint estima-
tion problems. Third, UKF can be used in conjunction
with standard optimization techniques. Details of the
implemented UKF algorithm can be found in [6].

2. EXAMPLE MODEL

Biological systems constitutes a well known examples
to nonlinear dynamic systems. For instance, respiration
is a dynamic process where observed respiration sig-
nals, namely airway pressure and flow, are the stochas-
tic processes. Thus, the model of the lung should incor-
porate the dynamic and nonlinear nature of the respira-
tion. In this work, nonlinear one-compartment lumped
parameter electrical model of the lung was used as an
example (Fig.1). If Kirchhoff voltage and current Laws
are applied to the electric circuit in Fig.1, measured
mask pressurePaw (t) equation can be given as:

Paw (t) = Pr (t) + Pc (t) − Pmus (t) + Pven (t) (4)

In the model, nonlinear time invariant (NTI) resis-
tive elementR represents the upper airway resistance
as the biggest contribution to the resistive pressure lost
in the tidal breathing range comes from the upper air-
ways. Rohrer’s equation is used to compose the relation
between airway flowV̇ (t) and mask pressurePaw (t).
Thus resistive pressure lost in the model can be given
as:

Pr (t) =
(

Au + Ku

∣

∣

∣
V̇ (t)

∣

∣

∣

)

V̇ (t) (5)

Although the linear compliance models have been
shown to successfully simulate lung tissue behavior
for small volume excursions, to generalize the model,
dynamic pressure across the nonlinear time invariant
(NTI) complianceC was adopted from the [7]. In [7],
nonlinear dynamic pressure dependence upon lung vol-
ume was given according to the formula:

Pc (t) = Ale
KlV (t) + Bl (6)

In (5) and (6),Au, Ku, Al, Kl andBl constitute the
unknown parameter vector.

Since the pressure developed in the respiratory sys-
tem and measured in the patient’s mask expend rela-
tively small part of the patient’s effort during breathing
and big part of the ventilator generated pressure, a se-
ries of the independent pressure sources are added to
the model.Pmus (t) represents the pressure effects on
the measuredPaw (t) done by the patient’s inspiration
muscles. Ventilator generated pressurePven (t) has a

direct effect on thePaw (t) as it is the major positive
component shaping the waveform. It should be empha-
sized that pressure sourcesPmus (t) and Pven (t) are
added to the model and reflect only the related effects
on thePaw (t), thus should not be seen as a direct lung
model functions.

Pmus (t) can be approximated by the second-order
polynomial function [8]:

Pmus (t) =







−Pmus max

(

(

1 − t

TI

)2
− 1

)

0 ≤ t ≤ T

Pmus maxe−t/τm TI ≤ t ≤ T

(7)

wherePmus max represents the effect of maximal pa-
tient’s effort onPaw (t) and can be seen as a element of
unknown parameter vector,TI andT are the inspiration
duration time and total duration of one cycle respiration
respectively. In the UKF algorithmTI is set to 1.6 s
with 3.3 s ofT . Constant value of 0.8 s was assigned to
τm in order to mimic the real respiratory system.

Ventilator generated pressurePven is simulated by
the exponential function [8]:

Pven (t) =







PEEP 0 ≤ t ≤ ttrig

Pps

(

1 − e−t/τvi

)

ttrig < t ≤ TI

Pps

(

e−t/τve

)

TI < t ≤ T
(8)

wherePps represents the maximal ventilation pressure
and set to 10cmH2O.

Positive End Expiration Pressure (PEEP) was also
considered and set to 4cmH2O. Ventilator inspira-
tion time constantτvi corresponds the flow acceleration
speed of the ventilator, whereas ventilator expiration
time constantτve is the ventilator deceleration speed
and contributes to the pressure rise at the termination of
the inspiration. Bothτvi andτve were set to 0.006 s.
The inspiration trigger delay of the ventilatorttrig was
set to 20 s corresponding to the real world scenario.

Figure 1: One compartment nonlinear lumped parame-
ter electrical model of the lung.



2.1. State-Observation Equations of the Lung
Model

State variables of the model circuit are the capacitor
charge which represents lung volumeV (t) and the cur-
rent through the resistor which represents the airway
flow V̇ (t). State equations of the lung model are for-
mulated from the model by using Kirchhoff current and
voltage laws. First state equation:

dV (t)

dt
= V̇ (t) (9)

and from (6)

dPc (t)

dt
= AlKle

KlV (t)V̇ (t) (10)

>From (4) and (10) second state equation is formu-
lated as:

dV̇ (t)

dt
=

Ṗaw (t) − Ṗven (t) + Ṗmus (t) − AlKle
KlV (t)V̇ (t)

Av + 2KvV̇ (t)
(11)

Observation equation is the measured mask pres-
surePaw:

Paw (t) =
(

Av + Kv

∣
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∣
V̇ (t)

∣
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∣

)

V̇ (t)

+ Ale
KlV (t) + Bl − Pmus + Pven

(12)

2.2. Discretization of the Model Equations for UKF
Algorithm

Equations (9), (11) and (12) should be discretized and
written in the form of (1) and (2) for UKF algo-
rithm. Thus discrete-time representation of the state-
observation equations was derived using the Euler inte-
gration method to give the model equations in the ma-
trix form:

[
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(13)
wherek is the discrete time indices andqk ∼ N (0, Qk)
is the process noise.

Observation equation is represented in discrete
form as:

P k
aw =

(

Ak
u + Kk

u

∣
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V̇k

∣

∣

∣

)

V̇k

+ Ak
l eKk

l
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l − P k
mus + P k

ven + rk

(14)

whererk ∼ N (0, Rk) is the observation noise.

Table 1: Set Parameterwk Vector

Parameter Value
Ak

u 0.31cmH2O · l−1 · s−1

Ku 0.32cmH2O · l−2 · s−2

Al 0.1cmH2O

Kl 1.0
Bl 0 cmH2O

Pmus max 1.2cmH2O

As seen from (13) and (14) the model pa-
rameters are written in dynamic form by the
time indices k. Thus, parameter state vec-
tor is represented as in (3) wherewk =
(

Ak
u Kk

u Ak
l Kk

l Bk
l P k

mus max

)T
.

3. LUNG MODEL STATE ESTIMATION
BY UKF

State vector
[

Vk V̇k

]T
was estimated by UKF with

artificially generated mask pressurePaw (t) that was
formulated as in (4). Simulated flow, volume and set
parameter vectorwk (see Table 1) composePaw (t).
Gaussian noise with variance 0.2 is also added to
Paw (t) signal as a measurement noise.

UKF algorithm parameters was set as in Table 2
with the consideration of the mean-squared error (MSE)
criterion:

mse

(

V

V̇

)

=

[

(V − V e)
2

(

V̇ − V̇ e
)2

]T

(15)
whereV e andV̇ e represents the estimated state vectors.

In order to estimate the simulated state variables,
Monte Carlo simulation method was used. The UKF
simulation was runN = 100 times to give expected
value of state variables. Basically, the strong law of
large numbers states that:

E [X] ≃
1

N

N
∑

n=1

Xn (16)

Fig.2 and Fig.3 shows estimated and set NLTI ca-
pacitor charge,V e

k and estimated NLTI resistor current,
V̇ e

k respectively throughout one period. Normalized
MSEs of both state estimation were shown in Fig.4.

4. DISCUSSION

Nonlinear electrical models well suit to modeling of the
dynamic systems. As direct solutions of the nonlin-
ear electric network (especially higher order ones) are
nearly imposable, deterministic [2] and probabilistic [1]



Table 2: UKF Algorithm Parameters

Parameter Simulation
Initial xk vector
x̂0 = E [x0] x̂0 = [0; 0]

Initial xk covariance matrix

P0 = E
[

(x0 − x̂0) (x0 − x̂0)
T

]

P0 = 1 ×

[

0.6 0.04
0.04 0.2

]

qk noise covariance matrix

Qk Q = 0.001 ×

[

0.001 0
0 50

]

Observation noise variance
Rk Rk = 0.2

Sigma point scaling parameter
α α = 0.99

Higher order scaling parameter
β β = 2

Scalar tuning parameter
κ κ = 0
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Figure 2: Estimated and set NLTI capacitor charge
(lung volume).

methods was used to estimate the states of the models.
In this work, probabilistic analysis was shown to be ap-
propriate approach for the problem, since dynamic sys-
tem observations are random processes. Also, it was il-
lustrated with the example that state estimation by UKF
was very successful.

UKF was specifically designed and widely used to
estimate state and/or parameters of the nonlinear dy-
namic systems from noisy observations. It was demon-
strated that UKF was also powerful technique to an-
alyze nonlinear circuits if some dynamic relation be-
tween state and observed signals can be formulated. As
shown from Fig.2 and Fig.3, UKF is able to track the
unobserved states.

Only drawbacks to apply UKF algorithm might be
the need of probabilistic description of the circuit state
vectors. This problem can be overcome with the con-
sideration of the underlying dynamic system. For ex-
ample in this work all the parameter needed for UKF
algorithm was set according to respiration process and
lung model. However, initial state covariance matrixP0

was set to time invariant non-dioganal matrix on a trial
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Figure 3: Estimated and set NLTI resistor current (air-
way resistance).
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Figure 4: Normalized MSEs ofV e
k andV̇ e

k .

and error basis. IfP0 increases, the estimates get noisy.
On the other hand, speed of estimation can be modified
by changing process noise covariance matrix,Qk.

Finally, normalized MSEs of the state estimates are
shown in Fig.4. As it is seen from the figure that the
estimation error is larger at the expiration part than it is
at the inspiration part. That can be explained with the
contribution of nonlinearity to the estimation. At the
expiration, independent pressure sources have very lit-
tle effects to the estimation because they either get con-
stant value or decrease to zero. In this case, nonlinear
state equation composes of only nonlinear terms.

In conclusion, UKF algorithm was successfully
used to estimate states from noisy observation at the
nonlinear circuit. If the probabilistic description of the
circuit’s states were known, easily implemented UKF
algorithm could be used to analyze the nonlinear cir-
cuit.
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