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ABSTRACT namely Bayesian Estimation [4]and approximate solu-
] o ) tions were explained in detail in [4, 5]. However, al-
Nonlinear electric circuits are used to model dynamic  though numerous approximate solutions to the estima-

systems. In order to analyze nonlinear electric circuit  tion problem were proposed in a variety of fields, prob-
models probabilistic methods can be used. Thus, inthis  gpilistic inference wasn't counted within the nonlinear

work the applicability of the probabilistic modeling for  glectric circuits solution methods. Thus, in this work

the nonlinear electric circuit models is demonstrated  the applicability of the probabilistic modeling for the

using illustrative real-world example. UKF algorithm  nonjinear electric circuit models is demonstrated using
was successfully used to estimate states fromnoisy ob-  jjjustrative real-world example.

servation at the nonlinear circuit. If the probabilistic In this work, the recursive probabilistic inference

description of thecircuit'sstateswereknown, €asily im- problem within discrete-time nonlinear dynamic sys-
plemented UKF algorithm could be used to analyze the  tem that can be described by a dynamic state-space

nonlinear circuits. model (DSSM) will be addressed. In order to formulate

DSSM equations Kirchhoff voltage and current Laws

can be used in the nonlinear electric circuit analysis.

1. INTRODUCTION Although the formulation of the state equations for non-

Nonlinear electric circuits with lumped parameters ardN€ar circuits are not straight forward, in many appli-
vast and highly researched area and many excellefAtioNs under some restrictions continuous-time tableau
contributions have been made. Dynamic systems wefguations can be transformed to discrete-time DSSM
often modeled and simulated by nonlinear elect rical efdauations in the form as:

ements [1]. Hidden or unknown state parameter estima-

tion of these models and system identification problems 1 = F (Th, Wk, uk) + @
were investigated by several approaches in the literature
[1, 2, 3]. Probabilistic inference is very suited to the
problem of the dynamic system analysis due to the na- Wit1 = Wk + Nk 3)

ture of "uncertainty” and "randomness" of the nonlinear
dynamic systems. wherex, represents the unobserved state of the system,

>From the probabilistic point of view the goal of wy, 1S the parameter vector and usually considered as a

the modeling manifests itself in the solution of thearkov processy is the known input and is the

distinct problem. with accepting underlving assum observed measurement signal. In this work the process
P ' pting ying P iseqr ~ N (0,Q%) and the observation noisg ~

. ) L . 0
tions: system parameters and time-varying state es?k] (0, Ry,) are assumed to be additive Gaussian noises.

mation by using noisy data series observed at the out- o
out of th)e/ systgm gptimal solution of this problem Among the probabilistic models Unscented Kalman
' Filter (UKF) model is well suited to the state estimation
This work was partially supported by The Research Fund of Th@roblem of non“r_lear e|_eCtrl(_2 models_ due to the cou-
University of Istanbul. Project number: T-965/06102006. ple of reasons. First, being time-varying parameters of

yr = H (Tk, wg, ug) + 1 (2




nonlinear electric elements, observation sequences ateect effect on theP,,, (t) as it is the major positive
termed as dynamic data in which the temporal orderingomponent shaping the waveform. It should be empha-
is important. For such data the state evaluation dynarsized that pressure sourcés,,; (t) and P, (t) are

ics should be considered. Second, UKF can be usedaaded to the model and reflect only the related effects
state estimation, parameter estimation or joint estiman theP,,, (¢), thus should not be seen as a direct lung
tion problems. Third, UKF can be used in conjunctiomrmodel functions.

with standard optimization techniques. Details of the p_ (¢) can be approximated by the second-order
implemented UKF algorithm can be found in [6]. polynomial function [8]:

2. EXAMPLE MODEL

Biological systems constitutes a well known examplespms t) = { —Prnus max ((1 - TLI)2 - 1) 0<t<T
to nonlinear dynamic systems. For instance, respiration
is a dynamic process where observed respiration sig- Y
nals, namely airway pressure and flow, are the stocha®€€ Prmus max represents the effect of maximal pa-
tic processes. Thus, the model of the lung should incolent's effort onF,,, (¢) and can be seen as a element of
porate the dynamic and nonlinear nature of the respirdNknown parameter vectdf; and7’ are the inspiration
tion. In this work, nonlinear one-compartment |umpedjurat|or_1 time and total duratlon_of one_cycle respiration
parameter electrical model of the lung was used as dRSPectively. In the UKF algorithrif; is set to 1.6 s
example (Fig.1). If Kirchhoff voltage and current LawsWith 3.3 s ofI". Constant value of 0.8 s was assigned to
are applied to the electric circuit in Fig.1, measuredm in order to mimic the real respiratory system.
mask pressur&,,, (t) equation can be given as: Ventilator generated pressufg.,, is simulated by
the exponential function [8]:

Prus maxe” /™™ T <t<T

Pow (t) = Py (1) + Pe (t) — Prus (t) + Poen (t) (4) PEEP 0 <1t <tiig

. o  Pun () =X P (L—e /™) ty <t <Ty
In the model, nonlinear time invariant (NTI) resis- Pys (e74/7°) Ty <t<T

tive elementR represents the upper airway resistance ®)

as the biggest contribution to the resistive pressure IOWherePps represents the maximal ventilation pressure

in the tidal breathing range comes from the upper air(,;md set to 1@mH,0.

ways. Rohrer’s equation is used to compose the relation . o
Positive End Expiration Pressure (PEEP) was also

between airway flow (¢) and mask pressutg,,, (¢). ) . R
y *) P Bowy (1) qpn&dered and set to @nH,0O. Ventilator inspira-

Thus resistive pressure lost in the model can be giverr . i
as: tion time constant,,; corresponds the flow acceleration

speed of the ventilator, whereas ventilator expiration
: . time constantr,. is the ventilator deceleration speed
P, (1) = (4u KthDVt 5 antr,. ! | SP
®) + ®) ®) ®) and contributes to the pressure rise at the termination of

Although the linear compliance models have beethe inspiration. Bothr,; and 7, were set to 0.006 s.
shown to successfully simulate lung tissue behaviofhe inspiration trigger delay of the ventilator.;, was
for small volume excursions, to generalize the modepet to 20 s corresponding to the real world scenario.
dynamic pressure across the nonlinear time invariant
(NTI) complianceC' was adopted from the [7]. In [7], Puw: (t) R

nonlinear dynamic pressure dependence upon lung vc
ume was given according to the formula: o A W/‘l—
P.(t) = 4"V 4 By 6)

In (5) and (6),A,, K., 4;, K; andB; constitute the p_, ()
unknown parameter vector.

Since the pressure developed in the respiratory sy: :
tem and measured in the patient’s mask expend rel: 4+ P (t)
tively small part of the patient’s effort during breathing
and big part of the ventilator generated pressure, a Se- o
ries of the independent pressure sources are added to .
the model. P,....; (¢) represents the pressure effects OrEgure 1:. One compartment nonlinear lumped parame-
the measured,,, (¢) done by the patient's inspiration (" €lctrical model of the lung.
muscles. Ventilator generated pressitg,, (¢) has a




2.1. State-Observation Equations of the Lung Table 1: Set Parameter. Vector
. k

Model
State variables of the model circuit are the capacitor Parameter Value
charge which represents lung voluivigt) and the cur- AF 0.31lemH,0 - 17" - 571
rent through the resistor which represents the airway Ky 0.32¢cmH,0 - 177 - 577
flow V (t). State equations of the lung model are for- A 0.1cmH>0
mulated from the model by using Kirchhoff current and K 1.0
voltage laws. First state equation: B 0cmH>0O
av (1) Prus max 1.2emH>O
=V (t 9
40 ©)
and from (6)
As seen from (13) and (14) the model pa-
dP. (t) AV () (10) rameters are written in dynamic form by the
dt time indices k. Thus, parameter state vec-
>From (4) and (10) second state equation is formut-Or is represented as in (3) WheTreU’“ -
lated as: ( Aikt K’L]j A;C Klk Blk P7]7€Lus max ) .

dv (t) _ Paw (t) — Pven () + Pm'u,s (t) — AlKleKlV(t)V(t) 3 LUNG MODEL STATE ESTIMATION
dat Ay + 2K,V (¢) BY UKF

11) . T . .
Observation equation is the measured mask preState vectof Vi Vi, | was estimated by UKF with
artificially generated mask pressufg,, (¢) that was

sureP,,,: i X
formulated as in (4). Simulated flow, volume and set
Poy (t) = ( A, + K, V(t)D V(t) parameter vectot (see Table 1) composE,,, (t).
(12) Gaussian noise with variance 0.2 is also added to
+ 4KV L By — Prus + Poen P, (t) signal as a measurement noise.

_ o _ UKF algorithm parameters was set as in Table 2
2.2. Discretization of the Model Equations for UKF  with the consideration of the mean-squared error (MSE)
Algorithm criterion:

Equations (9), (11) and (12) should be discretized and

written in the form of (1) and (2) for UKF algo- e 5 17T
rithm. Thus discrete-time representation of the state- mse ( v ) = { V- Ve)2 (V _ Ve) ]
observation equations was derived using the Euler inte- (15)

gration method to give the model equations in the MahereV e andv/® represents the estimated state vectors.

trix form: In order to estimate the simulated state variables,
Monte Carlo simulation method was used. The UKF
{ Vier | _ simulation was runV = 100 times to give expected
Virr | value of state variables. Basically, the strong law of
Vi ] large numbers states that:
il P, PEALLPE 4 PERL PR AbKERTVRY,
. Ak poKkV, 1 N
+{ ‘xik e E[X] :NZX,, (16)
k| n=1

(13) , . .
wherel is the discrete time indices ang ~ N (0, Q) F|g.2 and F|9.3 show§ estimated anq set NLTI ca-
is the process noise. pacitor chargey” and estimated NLTI resistor current,

Observation equation is represented in discretéx respectively throughout one period. Normalized
form as: MSEs of both state estimation were shown in Fig.4.

4. DISCUSSION

Vi D Vi (14) Nonlinear electrical models well suit to modeling of the
+ AfﬂeKﬁVk +BF—PF  +PE 4y dynamic systems. As direct solutions of the nonlin-

ear electric network (especially higher order ones) are
wherer; ~ N (0, Ry) is the observation noise. nearly imposable, deterministic [2] and probabilistic [1]

P, = (Af+ K¢




Table 2: UKF Algorithm Parameters e ‘ ‘ ‘ ‘
- - 7selvk‘

Parameter Simulation
Initial =, vector
Zo = E [x0] o = [0; 0] .
Initial z;, covariance matrix >
N N 0.6 0.04 q
Po = B [(@0 — d0) (20 — 30)7] || =1 [ 004 0.2 ] '
qr, Noise covariance matrix
0.001 0
Qr Q = 0.001 x |: 0 50 :|
Observation noise variance 1 . . L~

Rk: Rk =0.2 0 50 100 DléO - t200 250 360
M ata Points
Sigma point scaling parameter
« a = 0.99
Higher order scaling parameter

Figure 3: Estimated and set NLTI resistor current (air-
Scalar tuning parameter way resistance).
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Figure 2: Estimated and set NLTI capacitor charge

(lung volume). Figure 4: Normalized MSEs df andV¢.

methods was used to estimate the states of the modeigid rror basis. I, increases, the estimates get noisy.
In this work, probabilistic analysis was shown to be ap©" the other hand, speed of estimation can be modified
propriate approach for the problem, since dynamic sy changing process noise covariance matgx,

tem observations are random processes. Also, itwas il- Finally, normalized MSEs of the state estimates are

lustrated with the example that state estimation by UKShown in Fig.4. As it is seen from the figure that the
was very successful. estimation error is larger at the expiration part than it is

UKF was specifically designed and widely used tdt the inspiration part. That can be explained with the
estimate state and/or parameters of the nonlinear dg}gntnbunon of nonlinearity to the estimation. At the

namic systems from noisy observations. It was demorXPiration, independent pressure sources have very lit-

strated that UKF was also powerful technique to ant_le effects to the estimation because they either get con-

alyze nonlinear circuits if some dynamic relation peStant value or decrease to zero. In this case, nonlinear
tween state and observed signals can be formulated. AG!€ €guation composes of only nonlinear terms.
shown from Fig.2 and Fig.3, UKF is able to track the In conclusion, UKF algorithm was successfully
unobserved states. used to estimate states from noisy observation at the
Only drawbacks to apply UKF algorithm might be nonlinear circuit. If the probabilistic description of the
the need of probabilistic description of the circuit stat&Ircuits states were known, easily implemented UKF

vectors. This problem can be overcome with the cor2!9°rithm could be used to analyze the nonlinear cir-

sideration of the underlying dynamic system. For exCult
ample in this work all the parameter needed for UKF
algorithm was set according to respiration process and
lung model. However, initial state covariance matfix ~ 1. P.A. Ramamoorthy, “Nonlinear and Adaptive (In-
was set to time invariant non-dioganal matrix on a trial  telligent) Systems: Analysis, Modeling and Design
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