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Abstract 
 

For high frequency communication systems, commercially 
available computer aided design (CAD) tools are always 
preferred to design broadband equalizers. But for these 
tools, it is necessary to supply proper equalizer topology and 
element values. Therefore, in this paper, a practical method 
is proposed to generate mixed lumped and distributed 
element equalizers with good initial element values. Then, 
the gain performance of the designed equalizer can be 
optimized employing these CAD tools. The utilization of the 
proposed method is illustrated by means of the given 
example. It is shown that proposed method generates very 
good initials for CAD tools. 

 
1. Introduction 

 
For lots of applications, lumped-element networks are 

preferred because of their small dimensions. However, the 
interconnections between lumped circuit elements destroy the 
performance at high frequencies. So it would be wisely to use 
these connections as part of the network. Thus, networks with 
mixed lumped and distributed elements become necessary. 

In the characterization of the mixed element structures, 
transcendental or multivariable functions are used. In the first 
approach which is based on the classical study of cascaded non-
commensurate transmission lines [1], non-rational single 
variable transcendental functions are utilized. The synthesis of a 
transcendental driving-point impedance function as a cascade of 
lumped lossless two-ports and ideal uniform lossless 
transmission lines were studied in [2]. The other approach to 
describe mixed lumped and distributed two-ports is based on 
Richards transformation, ( τλ ptanh= , specifically, on the 
imaginary axis, the transformation takes the form 

ωτλ tanjj =Ω= , where τ  is the commensurate delay of the 
distributed elements) which converts the transcendental 
functions of a distributed network into rational functions [3]. 
The attempts to generalize this approach to mixed lumped and 
distributed networks led to the multivariable synthesis 
procedures, where the Richards variable Ω+Σ= jλ  is used for 
distributed elements and the original frequency variable 

ωσ jp +=  for lumped elements. In this manner, all the 
network functions could be expressed as rational functions of 
two complex variables. 

Unfortunately, a design theory for mixed lumped and 
distributed element networks still does not exist. Although some 
classical network theoretical concepts have already been 
extended to cover some classes of two-ports with mixed lumped 
and distributed elements, the problems associated with the 
approximation and synthesis of arbitrary mixed element 
networks could not yet been solved completely. 

In most of the existing studies, the particular interest is 
devoted to a special but a very useful network configuration. In 
addition to the lumped reactances, the lossless two-port is 
allowed to contain cascaded ideal uniform lossless transmission 
lines. Namely, the structure consists of cascaded lossless lumped 
two-ports and ideal transmission lines. 

In this paper, an algorithm to design broadband equalizers 
with mixed lumped and distributed element has been proposed. 
In the next section, broadband matching problem is described 
shortly, and then the characterization of mixed element two-port 
is explained. After giving the algorithm, an example is given to 
illustrate the utilization of the proposed algorithm. 

 
2. Broadband Matching 

 
The broadband matching problem can be considered as the 

design of a lossless two-port network between a generator and 
complex load, in such a manner that power transfer from the 
source to the load is maximized over a frequency band. The 
power transfer capability of the lossless equalizer is measured 
via transducer power gain ( TPG ) which can be expressed as the 
ratio of power delivered to the load to the available power from 
the generator [4-6]. 

In general, the matching problems can be grouped as single 
matching and double matching problems. In the single matching 
problems, the generator impedance is purely resistive and the 
load impedance is complex. If both terminating impedances are 
complex, and then the problem is called as the double matching 
problem. 

 
 

Fig. 1. Single matching arrangement 
 

Let us consider the classical single matching problem seen in 
Fig. 1. Transducer power gain ( TPG ) can be written in terms of 
the real and imaginary parts of the load impedance 

LLL jXRZ +=  and those of the back-end impedance 

222 jXRZ += , or in terms of the generator resistance 
)0( =GG XR  and the real and imaginary parts of the front-end 

impedance 111 jXRZ +=  of the equalizer as follows 
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Here if 1=α , G=β , and if 2=α , L=β . 
The objective in broadband matching problems is to design 

the lossless equalizer in such a manner that TPG  given by (1) is 
maximized inside a frequency band. So the matching problem in 
this formalism can be regarded as the determination of a 
realizable impedance function 1Z  or 2Z . Once 1Z  or 2Z  is 
obtained properly, the lossless equalizer network can be 
synthesized. 

In the proposed method, the preferred driving point 
impedance ( 2Z  or 1Z ) is determined utilizing the scattering 
parameters of the lossless equalizer, source and load reflection 
coefficients. So in the next section, canonic polynomial 
representation of a mixed lumped and distributed element two-
port network is briefly summarized, and then rationale of the 
proposed method is given. 

 
3. Canonic Polynomial Representation of a Mixed 

Element Two-Port Network 
 

For a mixed lumped and distributed element two-port, the 
scattering parameters may be expressed in terms of three 
polynomials fhg ,,  as follows [7,8] 
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where μ  is a constant such that 1=μ , “*” denotes 
paraconjugation. 

The variables of the polynomials in (2) are p  and λ . 
ωσ jp +=  is the usual complex frequency variable associated 

with lumped-elements, and Ω+Σ= jλ  is the conventional 
Richards variable associated with equal length transmission 
lines (Unit Elements, UEs) or so called commensurate 
transmission lines. 

),( λpg  is th
p nn )( λ+  degree scattering Hurwitz 

polynomial with real coefficients such that 
PλλP T

g
T

g
Tpg Λ=Λ=),( λ  

where 
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The partial degrees of two-variable polynomial ),( λpg  are 

defined as the highest power of a variable, whose coefficient is 
nonzero, i.e. ),(deg λpgn pp = , ),(deg λλλ pgn = . 

Similarly, ),( λph  is also a th
p nn )( λ+  degree polynomial 

with real coefficients such that ( ) PλλP T
h

T
h

Tph Λ=Λ=λ,  
where 
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),( λpf  is a real polynomial which can be constructed by 

using all the transmission zeros of the network. General form of 
the polynomial ),( λpf  is given by 
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where n  is the number of transmission zeros of the lumped-
element network ( pnn ≤ ), the difference ( nnp − ) is the 
number of transmission zeros at infinity of the lumped-element 
network, m  is the number of transmission zeros of the 
distributed-element network ( λnm ≤ ), the difference ( mn −λ ) 
is the number of transmission zeros at infinity of the distributed-
element network, )( pfi  and )(λjf  define the transmission 
zeros of lumped- and distributed-element subsections, 
respectively. Transmission zeros can be located anywhere in p - 
and λ -planes. From (5), it can be immediately deduced that the 
transmission zeros of each subsection have to arise in 
multiplication form. In other words, it can be assumed that 

),( λpf  of the entire mixed-element structure is in product 
separable form as 

 
)()(),( λλ fpfpf = .    (6) 

 
In a lossless network, if one only considers the real frequency 

transmission zeros formed with lumped-elements, then on the 
imaginary axis ωj , )( pf  will be either an even or an odd 
polynomial in p . Furthermore, due to cascade connection of 
UEs, )(λf  will have the following form 

 
2/2 )1()( λλλ nf −= .    (7) 

 
So a practical form of ),( λpf  can be obtained by 

disregarding the finite imaginary axis zeros except those at DC 
as follows, 

 
2/2 )1(),( λλλ nkppf −=     (8) 

 
where k  designate the total number of transmission zeros at 
DC. 

Since the network is considered as a lossless two-port, then 
the losslessness condition requires that 

 
IpSpS T =−− ),(),( λλ     (9) 

 
where I  is the identity matrix. Equation (9) can be expressed in 
an open form as 

 
),(),(),(),(),(),( λλλλλλ −−+−−=−− pfpfphphpgpg . (10) 
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Let us investigate the generic form of a lossless network 
constructed by using cascaded series inductances, transmission 
lines and shunt capacitances as shown in Fig. 2. Here, 
distributed elements are all equal length (or commensurate) 
transmission lines (Unit Elements, UEs) with constant delay τ . 
Since Fig. 2 presents a lossless two-port network formed with 
simple low-pass ladder elements (series inductors and shunt 
capacitors, connected with Unit elements), it is called an LPLU 
(low-pass ladder with UEs) structure or two-port. 

 
 

Fig. 2. A practical network topology 
 

To be specific, an LPLU structure can fully be described in 
terms of the real coefficients of the boundary polynomials 
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computed via the explicit factorization of (10) such that 
1)0,()0,()0,()0,( +−=− phphpgpg  and 

λλλλλλ nhhgg )1(),0(),0(),0(),0( 2−+−=− ,respectively, since 

)()(),( λλ fpfpf =  with 1)( =pf  and 2/2 )1()( λλλ nf −=  
for LPLU two-ports. 

In this case, two input reflection coefficients defined by 

)0,(
)0,()0,(11 pg

phpS =  and 
),0(
),0(),0(11 λ

λλ
g
hS =  completely 

describe the network constructed in two kinds of elements. To 
be more specific, )0,()( 11 pSpSL =  describes a lumped-element 
ladder network for which the transmission zeros are fixed by 
selecting the polynomial 1)( =pf . In this representation, the 

reflection coefficient )( pSL  can be thought as 
)0,(
)0,()(

pg
phpSL =  

in Belevitch form. Similarly, ),0(
),0(
),0()( 11 λ

λ
λλ S

g
hSD ==  

describes a lossless two-port constructed with cascade connected 
unit elements by setting 2/2 )1()( λλλ nf −= . 

The open form of the above polynomials are given as 
 

p
p

n
n phphphhph 0

2
201000 ...)0,( ++++= ,                (11a) 

p
p

n
n pgpgpggpg 0

2
201000 ...)0,( ++++= ,                (11b) 

λ
λ

λλλλ n
nhhhhh 0

2
020100 ...),0( ++++= ,                (11c) 

λ
λ
λλλλ n

nggggg 0
2

020100 ...),0( ++++= .                (11d) 

 

Synthesis of these networks can separately be carried out 
using classically known methods or by means of the 
decomposition algorithm of Fettweis [9,10]. Also, distributed 
section can be synthesized via the algorithms presented in 
[11,12]. Then, by mixing the elements of lumped and distributed 
sections in sequential order, the desired mixed-element network 
is obtained. 

It is important to note that LPLU structure can easily be 
generalized by selecting a desirable form for )( pf . For 
example, a generic form for a simple band-pass (BP), lumped-
element ladder connected with unit elements (UE) can be 
obtained if kppf =)( . In this case, the form 

kpphphpgpg 2)0,()0,()0,()0,( +−=−  yields the strictly 
Hurwitz denominator polynomial )0,()( pgpg =  by explicit 
factorization. Distributed sections of the network can directly be 
obtained from the numerator polynomial ),0()( λλ hh =  by 
explicit factorization of 

λλλλλλ nhhgg )1(),0(),0(),0(),0( 2−+−=− . 
 

4. Rationale of the Proposed Method 
 

Consider the double matching arrangement shown in Fig. 1. 
Input reflection coefficient of the equalizer when its output port 
is terminated in LZ  can be expressed in terms of scattering 
parameters of the equalizer as 
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where LS  is the load reflection coefficient and expressed as 
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Similarly, output reflection coefficient of the equalizer when 

its input port is terminated in GZ  can be written in terms of 
scattering parameters of the equalizer as 
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where GS  is the source reflection coefficient and expressed as 
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So the front-end and back-end driving point impedances of 

the equalizer can be calculated via the following equations, 
respectively; 
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As the result, the following algorithm can be proposed to 
solve single broadband matching problems with mixed lumped 
and distributed elements. The modified version of the proposed 
approach has been given in [14] to solve double broadband 
matching problems. 

 
5. Proposed Algorithm 

 
Inputs: 
• )()()( measuredLmeasuredLmeasuredL jXRZ += , )(measuredGR : 

Measured load impedance and generator resistance data, 
respectively. 

• )(measurediω : Measurement frequencies, 

)()( 2 tmeasuremenitmeasuremeni fπω = . 

• normf : Normalization frequency. 
• normR : Impedance normalization number in ohms. 
• 

λnhhhh 0020100 ,,,, … : Initial real coefficients of the 

polynomial ),0( λh . Here λn  is the degree of the polynomial 
which is equal to the number of distributed elements in the 
equalizer network. 

• 0201000 ,,,,
pnhhhh … : Initial real coefficients of the 

polynomial )0,( ph . Here pn  is the degree of the polynomial 
which is equal to the number of lossless lumped elements in 
the equalizer network. 

• )( pf : A monic polynomial constructed on the transmission 
zeros of the lumped-element section of the equalizer. 

• )(λf : A monic polynomial constructed on the transmission 
zeros of the distributed-element section. It is noted that for 
cascade connected UEs, 2/2 )1()( λλλ nf −=  is selected, 
where λn  is the total number of UEs. 

• τ : Initial delay of the distributed elements. 
• δ : The stopping criteria of the sum of the square errors. 
Outputs: 
• Analytic form of the input reflection coefficient of the lossless 

equalizer given in Belevitch form of 
),(/),(),(11 λλλ pgphpS = . It is noted that this algorithm 

determines the coefficients of the polynomials ),( λph and 
),( λpg , which in turn optimizes the system performance. 

• Circuit topology of the lossless equalizer with element values: 
The circuit topology and element values are obtained as the 
result of the synthesis of ),(11 λpS . Synthesis is carried out in 
Darlington sense. That is, ),(11 λpS  is synthesized as a 
lossless two-port which is the desired equalizer. 

Computational Steps: 
Step 1: Normalize the measured frequencies with respect to 

normf  and set all the normalized angular frequencies 

normmeasuredii ff /)(=ω . 
Normalize the measured load impedance and generator 
resistance with respect to impedance normalization number 

normR ; normmeasuredLL RRR /)(= , normmeasuredLL RXX /)(= , 

normmeasuredGG RRR /)(=  over the entire frequency band. 
Step 2: Calculate corresponding values of Richards variable via 

τωλ iii jj tan=Ω= . 

Step 3: Obtain the strictly Hurwitz polynomials )0,( pg  and 
),0( λg  as explained in Section III. 

Step 4: Calculate ),( λph  and ),( λpg  via (10) by using 
)0,( ph , )0,( pg , ),0( λh , ),0( λg  and )()(),( λλ fpfpf = . 

Then calculate scattering parameters via (2). 
Step 5: Calculate load and source reflection coefficients LS  and 

GS  via (13) and (15), respectively. 
Step 6: Calculate input and output reflection coefficients 1S  and 

2S  via (12) and (14), respectively. 
Step 7: Calculate input and output impedances 1Z  and 2Z  via 
(16a) and (16b), respectively. 
Step 8: Calculate transducer power gain via (1). 
Step 9: Calculate the error via )(1)( ωωε TPG−= , then 

∑= 2)(ωεδ . 

Step 10: If δ  is acceptable ( cδδ ≤ ), stop the algorithm and 
synthesize ),(11 λpS . Otherwise, change the initialized delay 
and coefficients of the polynomials )0,( ph  and ),0( λh  via any 
optimization routine and return to step 2. 

 
6. Example 

 
In this section, a single-matching example is presented to 

design a practical broadband equalizer. The normalized load 
impedance data is given by Table I. It should be noted that the 
given data can easily be modeled as a capacitor 4=C  in 
parallel with a resistance 1=R  (i.e. CR //  type of load). Since 
the given impedance data is normalized, there is no need a 
normalization step. The same example is solved here via SRFT 
(simplified real frequency technique) [13,15]. 

 
Table 1. Given normalized load and generator data 

 

ω  LR  LX  GR  
0.0 1.0000 0.0000 1.0000 
0.1 0.8621 -0.3448 1.0000 
0.2 0.6098 -0.4878 1.0000 
0.3 0.4098 -0.4918 1.0000 
0.4 0.2809 -0.4494 1.0000 
0.5 0.2000 -0.4000 1.0000 
0.6 0.1479 -0.3550 1.0000 
0.7 0.1131 -0.3167 1.0000 
0.8 0.0890 -0.2847 1.0000 
0.9 0.0716 -0.2579 1.0000 
1.0 0.0588 -0.2353 1.0000 

 
In the design, the delay (τ ) and the polynomials ),0( λh  and 

)0,( ph  are initialized as 6.0=τ , 1),0( 2 ++= λλλh  and 

1)0,( 2 ++= ppph  in an ad hoc manner, respectively. Also the 

polynomial )(λf  is selected as )1()()()( 2λλλ −== fpff . 
So in the equalizer there will be two cascaded unit elements and 
two low-pass type lumped elements. In the example, α  and β  
are selected as 2=α , L=β . So back-end driving point 
impedance 2Z  and load impedance LZ  are used in the TPG  
expression in Step 8. Then after running the proposed algorithm, 
the following scattering parameter of the equalizer is obtained 
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Fig. 3. Mixed-element equalizer topology with initial element 
values: 46566.0=L , 625.11 =Z , 333.1=C , 3003.62 =Z , 

2713.0=τ , 7507.1=n  
 

After synthesizing the obtained scattering parameter, the 
equalizer network seen in Fig. 3 is obtained. The gain 
performance of the designed equalizer is given in Fig. 4. 

 
 

Fig. 4. Performance of the matched system designed with mixed 
elements 

 
As it is seen from Fig. 4, initial performance of the matched 

system looks very good. However, it can be further improved 
via optimization utilizing the commercially available design tool 
called Microwave Office of Applied Wave Research Inc. 
(AWR) [16]. Thus, the final normalized elements values are 
given as 4675.0=L , 6.11 =Z , 346.1=C , 537.62 =Z , 

2713.0=τ , 735.1=n . For comparison purpose, both initial 
and the optimized performances of the matched system and the 
performance obtained via SRFT are depicted in Fig. 4. 

In Fig. 5, transducer power gain curves are zoomed. As seen 
in Fig. 5, the curves obtained via the proposed method and 
SRFT are nearly the same. 

 
 

Fig. 5. Closer examination of the gain performances 
 

7. Conclusion 
 

Design of practical broadband equalizers is one of the 
important problems of microwave engineers. In this regard, 
commercially available computer-aided design tools are utilized. 
Once the equalizer topology and propoer initial element values 
are obtained, these tools are excellent to optimize system 
performance by working on the initialized element values. So 
initial element values become very vital, since the system 
performance is highly nonlinear in terms of the element values 
of the equalizer. Therefore, in this paper, an initialization 
method is proposed to construct lossless broadband equalizers 
with mixed lumped and distributed elements. 

In the proposed method, the back-end or front-end driving 
point impedance of the equalizer network is determined in terms 
of the scattering parameters of the equalizer, source and load 
reflection coefficients. Then this impedance and one of the 
termination impedances ( GZ  or LZ ) are used to calculate the 
transducer power gain of the system. Scattering parameters of 
the equalizer are optimized to get the best gain performance. 

Finally, it is synthesized as a lossless two-port resulting the 
desired equalizer topology with initial element values. 
Eventually, the actual performance of the matched system is 
improved by means of a commercially available CAD tool. An 
example is presented to construct broadband equalizer with 
mixed lumped and distributed elements. 

It is shown that the proposed method generates very good 
initials to further improve the matched system performance by 
working on the element values. Therefore, it is expected that the 
proposed algorithm is used as a front-end for the commercially 
available CAD tools to design practical broadband equalizers for 
microwave communication systems. 
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