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ABSTRACT
This paper deals with internal stability problems of a
class of finite dimensional causal systems. Asymptotic
stability as well as stability in the sense of Liapunov is
analyzed by a new approach based on an abstract
energy concept induced by the output signal power.
The resulting metric-energy function determines both,
the structure of a proper system representation as well
as the corresponding system state space topology.
Several examples are shown for illustration of
fundamental ideas and basic attributes of the proposed
method.

I. INTRODUCTION
Almost in any field of science and technology some sort
of stability problem can appear. Instability is certainly the
most important phenomena which should be avoided
before any other aspect of reality will be attacked. Two
typical situations should be distinguished in dynamical
systems theory, if a stability problem has to be solved.
The first one arises if the energy function of a given
system is known in mathematical form and can be
explicitly used to describe the time evolution of internal
system energy E[x(t)]. In such situations some form of the
energy non-increasing test [1]:

             E(x) > 0 ,    
d ( ) 0

d
E x

t
≤                                    (1)

can be used.
On the other hand, there are certainly even more real
world situations in which some form of energy
conservation law is known to play a crucial role, but any
mathematical expression for the system energy is not
available. One standard way to overcome this difficulty is
to make some additional restrictive assumptions, such as
linearity and time-invariance, and try to develop some
algebraic stability tests based on the explicit knowledge of
the solution of differential or difference equations,
describing trajectories of the system.
For continuous-time system representations sets of
necessary and sufficient conditions for roots si:
                        Re si   < 0,                                                (2)

or for coefficients ai of the system characteristic
polynomials P(s) have been obtained.
For the so-called non-critical cases A. M. Liapunov has
legitimated the linearization approach above by his first
method, also called Indirect Liapunov`s Method, in the
year 1892. Substantially more appreciated became his
second method - the famous Direct Liapunov’s Method,
which  instead of the physical energy E works with a set
of axiomatically defined scalar functions V of the state
x(t), called Liapunov`s functions [2], [3]. The main goal of
the paper is to present an alternative method for stability
analysis. Instead of Liapunov functions a proper state
space metric [4] is introduced and utilized as a basic tool.

II. INTERNAL AND EXTERNAL STABILITY
Recall that from general point of view any collection of
trajectories constitutes a dynamical system which, in
principle, can be described either by its external behavior,
or by an internal structure. In the input-to-output
framework the external behavior of a continuous-time
causal system can be seen as a collection of all input-
output trajectories satisfying the relation:

( ) ( )( , , , ..., , , , ... ) 0,n mF t y y y u u u m n= ≤           (3)
The input signals u(.) and output signals y(.), explicitly
reflect a signal orientation property of causality relation
(3) and determine the external causality structure, which
is important for external stability. Formally, we can write
for an external stability property:

{(3) is stable }⇔ { ( )u t  <  δ  ⇒  ( )y t  <  ε }        (4)
In the present paper mainly concepts concerning the
internal stability will be examined. In such a case of the
state-to-state framework, only an internal causality
structure, reflecting a time orientation property of the
causality relation and describing a collection of all state
trajectories, seems to be appropriate:
               [ ] 0( ) ( ) , ( ) nx t f x t x t X R= ∈ ⊂                  (5)
in which  no external signals are explicitly introduced.

Definition 1:(Internal stability of an equilibrium state)
The equilibrium state *x  of the internal system
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representation (5), defined by the relation:
                     *( ) 0f x =                                             (6)
is:
 Stable ( in the sense of Liapunov – SSL ) if,

 for each ε > 0, there is δ = δ(ε) > 0  such that:
      *

0( )x t x− < δ  *( )x t x⇒ −  < ε, 0t t∀ ≥         (7)

 Unstable if it is not stable ( in the SSL )
 Asymptotically stable if  it is stable ( in the SSL ) and

δ can be chosen such that:
           *

0( )x t x− < δ ⇒  *lim ( )
t

x t x
→∞

=                   (8)

Theorem 1: (Sufficient stability conditions [1])
Let * 0x =  be an equilibrium state of the system

representation (5) and nD R⊂  be a domain in the state

space X  containing * 0x = . Let V : D R→
be a continuously differentiable function, such that

* 0x =   ⇒ V(x*) = 0 and  ( )V x  > 0 in D - {x*}    (9)

( )V x  ≤ 0   in   D                                                       (10)                                                                                                  
Then,x* = 0 is stable in the SSL. Moreover, if

( )V x < 0  in  D -{x*},   x* = 0                              (11)
then x* = 0 is asymptotically stable.

Remark 1: Stability conditions Theorem 1 are due to
original work of A.M. Liapunov. It has been proven later
by E.A.Barbashin and N.N.Krasovski [1], that the
condition (11) for asymptotic stability can be replaced by
the condition (10), if certain additional conditions are
fulfilled.
The main advantage of the Liapunov’s approach above is
its generality. It applies for time-varying linear and
nonlinear systems as well. Notice that the stability
conditions are only sufficient. Its main drawback is lack of
any systematic and universally applicable technique for
generation of the Liapunov functions V(x) having the
required properties.

III. SIGNAL POWER BALANCE RELATION
AND ENERGY-METRIC APPROACH

As an alternative to the method of Liapunov functions
above a conceptually different approach can be based on
the idea that, in fact, it is not the physical energy by itself,
but only a measure of distance from the system
equilibrium to the actual state x(t), what is needed for
stability analysis. Thus, instead of the physical energy a
metric *( ),x t xρ     will be defined in a proper way, and

for an abstract energy E(x) we then put formally:
2 *1( ) ( ),

2
E x x t xρ  =                          (12)

Within the state space paradigm the concept of an abstract
energy seems to be one of the most natural means
describing the internal system topology. A measure of
distance of actual state from an equilibrium point or, more

generally from an invariant set can be thought as a
measure of energy accumulated in the state space of the
given system. To avoid confusion an abstract system
energy concept and the concept of signal power for both
the continuous- and discrete-time system representations
will be defined first. We start with a natural assumption
that every real signal must be generated by a realizable
system. Let such a system, called signal generating system
(SGS), be given in the form:

0
0{ }: ( ) ( ) ( ), ( ) ,

( ) ( ),
S x t A x t Bu t x t x

y t C x t
ℜ = + =

=
  (13)

It seems natural to suppose that every real system has to
satisfy some form of energy conservation law. Let the
immediate value of the output signal power and
corresponding value of the system energy, accumulated in
the state x(t) be defined by:

2 2 d ( )( ) ( ) , ( ) ( ) , ( ), 0
d 
E xPt y t Et x t Pt

t
δ δ= = =− >     (14)

Putting 0,0)( tttu ≥∀=  and computing the

derivative of the energy function )(tE  along the
equivalent representation of the given SGS we get the
signal power balance relation:

2d ( ) ( )[ + ] ( ) ( )
d

T TE x x t A A x t y t
t

δ= = −           (15)

and, by integration, the energy conservation principle for
a proper chosen equivalent representation.       After
some manipulations also a special form of the well known
Lyapunov’s equation, expressing in fact the signal power
balance, could be obtained.
Hence, in case of zero input 0,0)( tttu ≥∀=  the total

energy accumulated in the system in time 0t  must be
equal to the amount of energy dissipated on the interval
[ )∞;0t by the output:

∫
∞

=
0

2
0 )()(

t

dttytE                           (16)

It is worthwhile to note that in general case the minimality
of system representation is equivalent to observability of
(A, C) and controlability of (A, B), but for zero input only
the observability is necessary. Thus the given
representation must be in the state equivalence  relation
with  a  structurally  observable  representation called
observability normal form. On the other hand, from the
energy conservation principle in form of the Eqns.(14),
(15) it follows, that another special form of a structurally
dissipative state equivalent system representation called
dissipation normal form must exist and can be specified
by the triplex of matrices (A, B, C) as follows:



1 2 1

2 3 2

3 4 3

1 1

, , 0, 0, , 0, 0
, 0, , 0, , 0, 0 0

0, , 0, , 0, 0 0
, ,

,
0, 0, 0, 0, , 0, 0
0, 0, 0, 0, 0, 0 0

T

n n n

n n

A C B

α α βγ
α α β

α α β

α α β
α β

− −

−    
    −    
    −

= = =    
    
    −
     −        

  (17)

It is easy to show that the set of real basic design
parameters αi , γ , βi must satisfy the following
fundamental consistency conditions:
  1. { }, 1, 2,..., : 0 ii i n α∀ ∈ < < ∞ ⇔
             structural  asymptotic stability                       (18)
  2. { }, 2,3,..., : 0 , 0, : 0i ii i n iα γ β∀ ∈ ≠ ≠ ∃ ≠ ⇔
structural minimality                                                (19)
In discrete-time case we proceed conceptually by exactly
the same way as before. The signal generating system
(SGS) is now represented by:

0
0{ }: ( 1) ( ) ( ), ( ) ,

( ) ( ),
S x k Ax k Bu k x k x

y k Cx k
ℜ + = + =

=
       (20)

and the immediate value of the output signal power and
corresponding value of the system energy, accumulated in
the state, be defined by:

2( ) ( ) ,P k y k= 2( ) ( ) ,E k x kδ=
)()( kEkP ∆−= (21)

Putting 0:0)( ≥∀= kku and computing the difference
of the energy function )(kE along any trajectory of the
system representation, we get the signal power balance
relation:

2[ ( )] ( )[ + ] ( ) ( ) (22)T TE x k x k A A I x k y kδ∆ = =−
After some manipulations a special form of discrete-time
Lyapunov’s equation, expressing in fact the signal energy
conservation principle, could be obtained. Assuming

0,0)( ≥∀= kku , the energy accumulated in the
system in time 0=k  is equal to the sum of energy
quanta dissipated at the interval  [0;∞) by  the  output
signal, given by:

  
2

0
( 0) ( )

k
E k y k

∞

=
= =∑                               (23)

Again, exactly as in the continuous-time version above,
the system representation must be in state equivalence
relation with a special structurally observable
representation called observability normal form. On the
other hand, from the energy conservation principle in
form of the Eqns.(8), (9) it follows, that another special
form of structurally dissipative state equivalent system
representation called discrete-time dissipation normal
form must exist and can be specified by the triplex (A, B,
C) according the Eqn. (25).  It is easy to show that the set
of real basic (direct) design parameters iδ  and the set of

real complementary (feed-back) parameters i∆  must

satisfy the following consistency conditions:
0 1,iδ< ≤ 2 2 1,i iδ + ∆ =

{1, 2, ..., }, ,                           (24)ni n δ γ∈ =
1 1

2 1 2 1 2

3 2 4 3 3

2 3 2

1 2 3 1 2 1

1 2 1 1 2 3 1 2 1

T

0 0 0 0

0 0
,

0

0
0

                          

0
0

n n n

n n n n n n

n n n

n n

A

C

δ
δ δ

δ δ δ
δ

δ δ
δ δ δ δ δ δ

γ

− −

− − − − −

− − −

−

−∆ ⋅ ∆ 
 −∆ ⋅ ⋅ ∆ −∆ ⋅ ∆ 
 −∆ ⋅ ⋅ ⋅ ∆

=  −∆ ⋅ ∆ 
 −∆ ⋅ ⋅ ∆ −∆ ∆
 

⋅ ⋅ ∆ ⋅ ⋅ ∆ ⋅ ∆ ∆  





=



1

2

3

1

,

n

n

B

β
β
β

β
β

−

 
 
 
 

=   
  
  
  

     

  (25)

having two important consequences:
  1. , {1,2,..., }: 1ii i n∀ ∈ ∆ < ⇔
structural asymptotic  stability                                   (26a)
            2. : 0 1, 0, 0i ni δ γ β∀ < ≤ ≠ ≠ ⇔
structural  minimality                                                  (26b)

IV. EXAMPLES
Example 1.  (Stability analysis of a linear system)
Let the representation  (13) is given for  n = 4, the input
signal ( ) 0u t = , for 0t t≥ , and the corresponding
characteristic polynomial has the following general form:

    
[ ]

1 2
1 2 1

( ) det -

...
n

n n n
n n

P s sI A

s a s a s a s a− −
−

= =

= + + + + +
  (27)

Let the parameters a1, a2,…, an  of ( )nP s are considered
as unknown and the region of asymptotic stability in a
parameter space has to be specified. Assume that
                            -1det 0A A≠ ⇔ ∃                      (28)
The condition (28) is necessary and sufficient for
existence  of  the  unique equilibrium state  x*=  0, and
for n = 4 it follows from the Eqn.(17)
              2 2

2 4 2 4det = 0 0, 0A α α α α≠ ⇔ ≠ ≠         (29)
where

A  =  

1 2

2 3

3 4

4

, , 0 , 0
0 0

0 0
0 0 0

α α
α α

α α
α

− 
 − 
 −
 −  

             (30)

Hence the parameters a1,…, a4 of the characteristic
polynomial are explicitly expressed by

                           

1 1
2 2 2

2 2 3 4

2 2
3 1 3 4

2 2
4 2 4

,
,

( ) ,

a
a
a
a

α
α α α
α α α
α α

=

= + +

= +

=

                    (31)

It follows for 1, 2, 3, 4, { }ia i ∈ that

                          ( )i iR x t Rα ∈ ⇔ ∈                     (32)



i.e. for all state variables 2
ix  is non-negative. Thus for the

Eucleidian metric 2ρ ρ=  we get

[ ] 21 1 12 2
2 2 2

1
( ) ( ),0 ( ) ( )

n

i
i

E x t x t x t x tρ  
 

=
= = = ∑       (33)

and consequently it holds:

      
* *

2 *

1 ( ) 0 ( ) , ( 0)
2 ( ) ( ) 0 ( ) 0 ( )

o

o
i i

E x x t x x
x t R x t E x x t x

= ⇔ = =
∈ ⇔ ≥ ⇒ > ⇔ ≠

In order to use energy nonincreasing test (1) we have to
compute the derivative of the output signal energy
function E(x) along the system representation (13), given
by the matrix (30) in the following explicit form:

1 1 1 2 2

2 2 1 3 3

3 3 2 4 4

4 4 3

( ) : ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( )

S x t x t x t
x t x t x t
x t x t x t
x t x t

α α
α α
α α
α

ℜ = − +
= +
= − +
= −

          (34)

                          1( ) ( )y t x tγ=                             (35)
We get

      
{ }

2 21
1 1 2

d ( ) ( ) . ( )
d s

E t x t y t
t

αα
γℜ

= − = −       (36)

where γ is a real power scaling parameter
                0  <  γ  <  ∞                                    (37)

Thus, the signal energy conservation principle in form of
(15) holds ( for δ = ½ ,  γ ≠ 0 ) iff:
             2( ) ( )P t y t=    ⇔    α1 =  γ2 > 0           (38)
Remark 2: Notice, that  α3  is the only element of the
matrix  A  which can be arbitrary from the stability
analysis point of view. If we put  α3  = 0, then the state
variables ,ix  i = 3,4 become unobservable by the output
y ; thus only the first  isolated subsystem with the state
variables ,ix  i = 1,2 which is observable, will be
asymptotic stable, while the second one will oscilate on
the constant  energy level, corresponding to initial
conditions with the frequency given by the parameter α4.
As a result the whole system is stable in the sense of
Liapunov, but not asymptotically.
From the equation (31) it follows that in such a case the
characteristic polynomial takes the form:
     2 2 2 2

1 2 4 1( ) ( )( ),P s s s sα α α α= + + + > 0       (39a)
Hence we have:

      Re s1 < 0,  Re s2 < 0,  Re s3 = 0,  Re s4 = 0           (39b)
Remark 3: It is easy to prove in general that for
asymptotic stability the conditions mentioned above are
necessary but not sufficient. If, in  addition, the couple
(A,C) has the well known observability property, then the
resulting conditions will be necessary and sufficient  for
asymptotic stability, too.

Example 2. (Asymptotic stability analysis)
Let n = 4, the matrix A is given by the eqn. (30) as before
and the matrix  C is defined by C = [ γ, 0, 0, 0 ]. Then the
observability matrix  Ho is defined by

 2 3
0 ; ; ( ) ; ( )T T T T T T TH C A C A C A C=          (40)

and the necessary and sufficient observability conditions
have the following form:
       det Ho 2 3 40 0, 0, 0α α α≠ ⇔ ≠ ≠ ≠ , γ ≠ 0.     (41)
From the Eqns. (41) and (38) the set of necessary and
sufficient conditions of  asymptotic stability  results
                 α1 > 0, 2 3 4 0, 0, 0α α α≠ ≠ ≠                  (42)

Example 3.  (Relation to Hurwitz stability criterion)
If needed, we can determine the set of parameters αi ,  i =
1, 2, 3, 4  from the Eqn. (31). Then we get:

           

1 1 1

1 2 3 2
2

1 1

2 2
1 2 3 3 1 4 3

3
1 2 3 1 2 1

1 4 4 1
4

1 2 3 2 3

,

( )

a

a a a
a

a a a a a a
a a a a

a a
a a a

α

α

α

α

= = ∆

− ∆
= =

∆

− − ∆
= =

− ∆ ∆

∆ ∆= =
− ∆ ∆

                 (43)

where the new parameters  k∆  , k= 1, 2, … can be
properly expressed as diagonal minors of the well known
Hurwitz determinant. It is very easy to derive the general
expression for any order  n > 3 in the form:

        3

2 1

k k
k

k k

α −

− −

∆ ∆
=

∆ ∆
 ,   k = 4, 5, 6, … , n    (44)

Using the expressions (43), (44) together with the
requirement ,k Rα ∈  the following set of equivalent
necessary and sufficient conditions of the asymptotic
stability can be obtained:
         1 1,Rα α∈ > 0      ⇔     ∆1      >  0

         2
2 2

1

, 0Rα α ∆
∈ ≠ ⇔

∆
   >  0

        3
3 3

1 2

, 0Rα α ∆∈ ≠ ⇔
∆ ∆

>  0                    (45)

        1 4
4 4

2 3

, 0Rα α ∆ ∆∈ ≠ ⇔
∆ ∆

>  0

The resulting conditions (45) are obviously equivalent to
the set of the well known  Hurwitz conditions:
                       k∆  > 0 , k= 1, 2, …, n                           (46)
It means that linear algebraic methods for stability
analysis can be seen as a special case of methods based
on the proposed energy-metric approach.



Example 4.  (Non-linear stability analysis)
Let us consider a simple non-linear system given by the
following input-output representation :
   2

2( ) ( ) ( ) ( ) ( )y t y t y t a y t u tε α β + − + =    (47)

If the matrix C is defined by C = [γ, 0], and the chosen
structure of the matrix  A(x)  is defined by

1 2
1 23

1 2

2

,
( , )

, 0

x a
A x x

a

ε α β  − −  =
 − 

      (48)

then the system representation is locally observable if

20, 0aγ ≠ >                                (49)
and the signal energy conservation principle gives

    1 2 2
1 13

( )

d ( ) 0,
dt s

E t P P x xε α β
ℜ

 =− ≤ = −        (50)

It follows that the unique equilibrium state * 0x =      is

asymptotically stable in the region 2D X R⊂ ⊂
2 2

1 2 1 1 2
3 3, : an dD x x x x xα α
β β

  = < + < 
  

       (51)

if  ε > 0,  α > 0,  β > 0, 2 0a > .

Example 5. (Relation to Direct Method of  Liapunov)
Let us consider the same non-linear system given by
    2

2( ) ( ) ( ) ( ) ( )y t y t y t a y t u tε α β + − + =     (52)

but instead of the  matrix structure A(x) the state x(t)  is
defined by  1 2, /x y x dy dt= = .
Then the corresponding system representation is
structurally observable with the observability matrix      

                                          Ho  =  I                               (53)
and from the signal energy conservation principle

        1 2 2
1 13

( )

d ( ) 0,
dt s

V t P P x xε α β
ℜ

 =− ≤ = −     (54)

a unique Liapunov function V(x) can be determined by
isometric transformations of the energy function (12)

                       [ ]21( ) x(t), 0
2

E x ρ=                       (55)

and for  α = β = 2a = 1 we get

   

1 1 22 6 2 4 2 2
1 1 12 9 3

2 3 2
1 2 1 2 23

( ) (1 )

2

V x x x x

x x x x x

ε ε ε

ε ε







= − + + −

− + +
   (56)  

and for linear conservative case (ε = 0) it follows

                             1 2 2
1 22( )V x x x 

  
= +                     (57)

Example 6.  (Estimation of domain of attraction)
From the Eqns. (51) and (56) we directly get the set

              1 2 1
3 3, : , [ ]D x x x V xα α
β β

  = < < 
  

            (58)

representing region of the state space X for which the
property of asymptotic stability is warranted by V(x), if it
holds:  ε > 0,  α > 0,  β > 0, 2 0a > .  Moreover

                     β  0 ⇔   D  X  = 2R                       (59)
and  global asymptotic stability follows.

Example 7.  (Generation of Liapunov functions)
Let a non-linear system is given by  the  representation:
  (4) (3)

1 2 3 4( ) ( ) ( ) ( ) ( ) 0y t a y t a y t a y t a y t+ + + + =  (60)
gained  by an approximative linearization procedure and
the state variables are defined by
     (3)

1 2 3 4, , ,x y x y x y x y= = = =                     (61)
then the observability matrix   is given by Ho = I, while the
observability matrix  Ho of the state equivalent
representation  (30) is triangular and  invertible. It is easy
to show that the Liapunov function V is given by

      [ ] 11
0 02( ) ( ) . . ( )T TV x t x t H H x t

−
 =                       (62)

and for (59), (60) it can be explicitly expressed by
2

2 1
1 1 22 2

2 2

22
2 1

1 2 32 2 2 2 2
3 2 3 2 3

1 1
2

1 . . .

V x x x

x x x

α
α α

α α
α α α α α

  
= + + + 
  

 
+ + + + 
  

    (63)

V. CONCLUSIONS
In the contribution a new unifying and constructive
approach to linear and non-linear stability problems,
based on a metric - energy concept of the system state
space, has been presented.
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