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Abstract 
 

In real world applications, it is important that mobile robots 
know their location to achieve goals correctly. The 
localization of the robot is difficult by using raw sensor data 
because of the noisy measurements from these sensors. To 
overcome this difficulty probabilistic localization algorithm 
approaches can be used. The Particle filter is one of the 
Bayesian-based methods. In this study, two new features 
incorporated into the particle filter approach. These features 
are: decreasing the size of sample space using compass data 
and a new sensor model. The proposed approach is applied 
in the localization problem of a mobile robot. Performance 
of the proposed algorithm is compared with the 
performance of traditional particle filter approach by 
changing several parameters of the system. These analyses 
emphasized that the proposed approach improved the 
localization performance of the system. The results are 
promising for the future studies on this subject. 

 
1. Introduction 

 
Mobile robots have been used for a large variety of tasks in 

different environments. To operate correctly, a robot must know 
its exact position and orientation. The process of computing the 
position of robots in a known environment using sensor 
readings, odometer measures and map information is defined as 
the localization problem [1]. 

In real world applications, the major problem is the accurate 
localization of robots because of the lack of perfect sensors. In 
most cases, it becomes nearly impossible to find the exact 
position due to noisy measurements. To overcome this problem 
the fundamental concept proposed in the literature is 
probabilistic approaches. 

Kalman filter approach was first implemented by Mautarlier 
and Chatila [2] to localization problems and used many times 
[3]. The disadvantage of the Kalman filter is the use of a 
unimodal Gaussian distribution and linear system model. To 
overcome unimodal distribution limitation, multi-hypothesis 
tracking approach, which uses a mixture of Gaussians, is 
proposed [4]. In this case, the assumed system model is still 
linear. The other method, recursive Bayesian filter, is a robust 
way for estimating the state of robots and different 
implementations of these methods exist. Moravec [5] and Elfes 
[6] introduced occupancy grid maps to represent the 
environment. Graph-based topological methods [7] and metric-
based grid approaches are efficient discrete Bayesian methods. 
Topological methods are easy-to-implement with the use of 
landmarks, but they have a disadvantage of coarse 

representation. Whereas, grid-based Markov localization [8] 
uses fine-grained grid structure, which causes computational and 
space complexity. An alternative and efficient way of Bayesian 
methods is the Particle filter approach. Particle filter-based 
Monte-Carlo localization method is developed by Fox [9]. Later 
various Particle filter algorithms are proposed [10], [11]. In this 
paper, two new features incorporated into the particle filter 
approach. These features are: decreasing the size of sample 
space using compass data and a new sensor model. This new 
approach is applied in the localization problem of a mobile 
robot. The results of the experiments show that the proposed 
approach improved the performance of the traditional particle 
filter method. 

The structure of the paper is as follows: The Bayesian-based 
localization is covered in Section 2, the new approach for 
particle filter based localization is given in Section 3, the 
applications of the algorithm are given in Section 4, and the 
detailed analysis of the proposed method is covered in Section 5.  
Conclusions and the future work are presented in Section 6. 

 
2.  Bayesian-Based Localization  

 
Recursive Bayesian filters consist of sequentially repeated 

two steps, prediction step and update step. When a new 
odometer measure comes, the prediction step is done using 
earlier motion and sensor data. If a new sensor reading is 
returned, the update step is executed. 

The Particle filter which is a special case of the recursive 
Bayesian-based filters represents the distribution by a set Â of � random samples. Each sample contains a state vector D and a 
weighting factorg", Â X �Dr "r�p ² X � ´ g�. 

The prediction step incorporates the robot motions into the 
sample set. Here, an incremental motion model is used to 
calculate new states. The motion model uses angle and distance 
information between two successive states. Each state is 
described by the position and orientation of the robot. Position 
and orientation of the robot are determined by using encoder and 
compass readings, respectively. Error in each reading is 
represented by a Gaussian distribution [1]. 

The update step uses sensor model to calculate the weights of 
the samples. The weights indicate the importance of samples. 
The significant point here, how the probability of robot's sensor 
measurements is determined. Fox et al. [8] has proposed a 
sensor model to compute the total sensor probability based on 
the distance to the closest obstacle along the direction of the 
sensor.  This traditional sensor model has been described by 
approximately a Gaussian distribution with mean the distance to 
the obstacle. If more than one sensor is used, the total sensor 
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probability for each sample is calculated as the multiplication of 
individual probabilities. 

The last step of the algorithm is called resampling where the 
samples are redistributed according to their weights. In this 
algorithm, when a sensor measurement is received, the weight  
of particle  is computed to give the probability of the robot to be 
in a state. Then, the resampling algorithm is executed to obtain a 
new sample set from the old set via the particle weights. The key 
idea of the approach is that the samples with higher weights 
survive with higher probability than the others. 

 
3. A new approach for particle filter localization  

 
The proposed method introduces new features in two steps of 

the algorithm. These are: inclusion of compass data into 
localization and using a new normalized sensor model. In the 
following subsections, these features are explained in details.  

 
3.1. Effect of the Compass 

 
Initially, the belief of robot’s location is distributed 

uniformly. This uniform distribution is obtained by using Halton 
sequence [12] which gives equally spaced samples in position 
and orientation dimension.  

The nature of the particle filter requires a large number of 
samples. For this reason, the computation and memory cost 
grows. In this study, information received from the compass is 
used to reduce the size of the sample space. Thus, the memory 
requirement and computation time are reduced.   

The use of the compass gives information about the robot’s 
orientation. Let f}  be the orientation of the robot read by the 
compass, and �� X �D�p C�p f�� be the state of the sample. The 
bounds of D� and C� are determined by the environment, and f� 
alters between 0 and Y�. The orientation-space reduction factor, ��, is used to reduce the configuration space of the orientation. 
The reduced orientation range, f�, is defined by using ��. 

 
                                gf} � �� # f�g # f} h ��                          (1) 

 
The ratio of the probability of the reduced configuration 

space to the probability of the whole configuration space 
(reduction constant) is defined as: 

                  

g$ :�ND�p C�p f�O?$N�VD�p C�p f�WO X ��� ggggggggggggggggggggggggggggVYW 

                 
In this study, �� X zb  is used.  The number of the samples is 

related to the reduction constant. The dimension of the new set 
is equal to the dimension of the original set times the reduction 
constant.  Smaller number of samples means smaller 
computation cost. However, for successful robot localization, 
there should be a lower bound for the number of samples. A 
detailed analysis of the compass effect is given in Section 5. 
 
3.2. Normalized Sensor Model 

 
The sensor model is used to calculate the weight of the 

samples. In the traditional sensor model, the total sensor 
probability is calculated by multiplying individual sensor 
probabilities [1]. Let $jVCjºDW, $bVCbºDW,….,and  $\VC\ºDW  be 
the individual sensor probabilities for � sensors. In this model, 
total sensor probability is defined as in equation (3). 

$¶n$ X % $�VC�ºDW\
��j gggggggggggggggggggggggggggggggggggV¦W 

 
In case of accurate measurements, the following relation holds. 
 $¶n$V$���\W\ P �ggggggggggggggggggggggggggggggggggggggggV­W 

 
Where $���\ is defined as the arithmetic mean of all individual 
sensor probabilities. However, at a given point D , if the 
calculated probability of a sensor deviates much from the 
calculated probabilities of other sensors this condition is named 
as adverse probability condition. This condition occurs under the 
following situations  
 $VC�ºDW i &$NCr'DOg'g² X � ( �g)g² * �+   
 or                                                                                              (5) $VC�ºDW � &$NCr'DOg'g² X � ( �g)g² * �+ 
 
Then the ratio given in equation (4) becomes 
 $¶n$V$���\W\ � �ggggggggggggggggggggggggggggggggggggggggV«W 

 
As this ratio becomes smaller than one, the samples supposed to 
survive are affected and their probability may decrease below 
the threshold. Due to this, the success of the localization 
decreases. In order to overcome this problem, the normalized 
sensor model is proposed. In this approach, the effect of the 
adverse probability is normalized by using the geometric mean 
of the sensor probabilities. The normalized total probability is 
given by the following equation. 

 

$�n$ X G% $VC�ºDW\
��j Hj \9 gggggggggggggggggggggggggVªW 

 
This normalization reduces the negative effects of the sensors 

with very low and/or high probabilities. So, the ratio given 
below stays nearly one, although an adverse probability case 
occurs. 
 $�n$V$���\W\ , �ggggggggggggggggggggggggggggggggggggggggV®W 

 
The ratio is nearly one, so the samples will survive, unless 

most of the individual probabilities are adverse. These survived 
samples may belong to true or false location. The samples 
belonging to the false location will be eliminated in the next 
steps of the process. The effect of the normalized sensor model 
is analyzed in the Section 5. 

 
4. Application of the Proposed Method 

 
In this section, the proposed Particle filter approach is 

applied to localize a Pioneer P3-DX robot in a laboratory 
environment. The P3-DX has a balanced drive system which 
includes two-wheel differential drive, caster wheel, and high-
resolution motion encoders. It has also wireless Ethernet 
networking system and Pentium-based onboard computer 
system [13]. The sensors on the robot are: 16 sonar, a SICK 
LMS200 laser range finder, a PTZ Camera, and a compass.  
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In this study, the laser range finder is used for the 
applications. This sensor emits 180 laser beams with a 10 
resolution. The proposed sensor model uses the range values 
returned by some of these beams. Each beam is considered as an 
individual sensor.  

The applications were realized in the Eski�ehir Osmangazi 
University Electric-Electronic Engineering Department 
Artificial Intelligence and Robotics Laboratory. The width and 
height of the experiment environment are 7300mm and 
8500mm, respectively. The map of the experimental 
environment and the path followed by the robot at localization 
process are shown in Fig. 1. The numbers in the figure represent 
the localization step. In this part, the robot followed the path and 
during its travel data from compass, 16 sonar, 180 laser range 
finder data, the position coordinates, and orientation angle are 
recorded into a txt file at every 1000 msec. In the next part, the 
txt file is used as the input of the proposed localization method.  

 

 
 

Fig. 1. The path followed by the robot at localization  
 
 

 
 

Fig. 2. The example of localization process 

The localization process results are shown in Fig. 2. In this 
figure, the results of the prediction and update steps are shown 
in parts (a); the results of the resampling step are shown in parts 
(b). The initial belief of the robot location is shown Fig. 2-1a. As 
seen from this figure, the robot believes that it can be anywhere 
in the environment. The proposed procedure updates the 
probability of each sample by using laser beams and chooses the 
locations which have greater probability than a specified 
threshold. Fig. 2-1b shows the samples after one cycle. This 
procedure is recursively applied until the standard deviation of 
the sample locations is below a given value. In this example, the 
procedure localized the robot at the third step. Results of each 
step are given in Fig. 2-2a through 2-3b. As seen from Fig. 2-3b 
the location of the robot is determined. 

 
5. Detailed Analysis of the Proposed Approach 

 
To have a detailed analysis of the proposed approach, first 

some definitions are given:  
NOS (Number of Samples): Density of the samples in Unit 

Sample Space (USS).  
Step Cost: Duration required to process whole samples by 

utilizing laser beam values. 
NOLS (Number of Localization Step): Number of steps that 

true localization is achieved. 
LSR (Localization Success Ratio): Ratio of the number of 

successive localizations and total number of experiments. 
In this study, the USS for the position and orientation are 

chosen as 1m2 and 180°, respectively. 
First, the effects of NOS and number of beams on the Step 

Cost are investigated. The NOS values are 10, 20, 40, and 80 per 
USS. The numbers of beams are between 1 and 18. The results 
are given in Fig. 3. As seen in the figure, the Step Cost grows 
exponentially as the NOS and number of laser beams increase.  
In this figure and the following figures, the numbers on the right 
column represent the number of beams. For real time 
applications, the Step Cost should be minimized without 
affecting the NOLS and LSR values negatively. The proposed 
approach is analyzed in this respect.  
 

 
 

Fig. 3. Step Cost vs. NOS and Number of Beams 
 

5.1. Performance Factors 
 
The performance of the proposed approach is investigated in 

terms of the NOLS and the LSR. It is expected that localization 
performance will improve and the robot will be localized 
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quickly, if more information is injected into the system.  The 
information obtained about the environment is related to the 
number of laser beams used in the method. It is expected that, 
NOLS would decrease as the number of the laser beams 
increases. The experimental results are shown in Fig.4. The 
results confirm the expectations. However, the performance of 
the method is better when the number of lasers is odd.  The 
reason of this is that one of the beams having the same angle 
with robot orientation is selected in the odd number of the laser 
beam case. 

 

 
 

Fig. 4. NOLS vs. NOS and Number of Beams 
 

The second factor for the system performance is the LSR. 
Since the distributed samples are random due to the nature of the 
probabilistic-based localization systems, successive localization 
is not guaranteed. Results of the experiments are shown in Fig.5. 
As seen from the figure, the LSR increases as the NOS increases 
which is an expected result. 
 

 
 

Fig. 5. LSR vs. NOS and Number of Beams 
 

5.2. Compass Effect  
 

In order to investigate the effect of the compass, experiments 
are conducted with and without using the compass information. 
In Fig. 6 the NOLS values are compared for 80 NOS and 
different number of beams. Except the first value, using the 
compass information improves the performance of the system. 
 

 
 

Fig. 6. NOLS with and without compass  
 

The LSR is also improved when the compass information is 
integrated into the system. Results of the experiments are given 
in Fig. 7. The LSR with the compass is always greater than that 
of the corresponding value without the compass. Additionally, 
when the compass is used LSR is 100% for most of the cases.  
 

 
 

Fig. 7. LSR with and without compass  
 

By using additional compass information, range of the 
configuration space for orientation is reduced. Therefore, the 
number of samples is reduced by the reduction factor and at the 
same time, the samples are concentrated around the true 
orientation. This increases the success probability of the 
algorithm and also decreases the number of steps.  

 
5.3. Effect of the Normalized Sensor Model 

 
The total sensor probability is calculated by multiplying the 

individual sensor probabilities [8]. But, if one of these sensors 
gives an adverse probability; the total sensor probability is 
negatively affected from this adverse probability and the LSR 
turns out to be very low.  In order to improve the LSR, a 
normalized sensor probability approach is proposed. Fig. 8 
shows the LSR for both sensor models. The LSR with 
normalized sensor model is always greater than that of the 
corresponding value with traditional sensor model. 
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Fig. 8. LSR with and without normalized sensor model  
 

Although the LSR is improved when the normalized sensor 
model is used, the NOLS gets worse. In case of the traditional 
sensor model, localization is achieved in smaller steps; however, 
this localization may not occur at the correct location because of 
negative effects of adverse probability. Comparative results are 
given in Fig. 9.  

 

 
 

Fig. 11. NOLS with and without normalized sensor model  
 

6. Conclusions 
 

In this study, two features are integrated into the traditional 
Particle filter algorithm. One of the features is using the 
compass information.  By using this information, range of the 
orientation configuration space is reduced into an interval 
around the actual orientation of the robot. The second feature 
used is a normalized sensor model. In the traditional sensor 
model, the adverse probability causes to localize into an 
incorrect location. To prevent this effect a new normalized 
sensor model is proposed. In this model, the effect of the 
adverse probability is normalized by using the geometric mean 
of the sensor probabilities.  

To show the effects of the proposed approach, two 
performance factors namely the NOLS and the LSR are 
introduced. These factors are investigated in terms of the NOS 
and number of beams. It is shown that, both factors are 
improved by the proposed method.  
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