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ABSTRACT 

The accurate computation of the resonant frequency of 
microstrip antennas is an important factor to guarantee 
their correct behaviour. To this aim, High Frequency 
Structure Simulator (HFSS) is commonly used. In this 
paper, we presented an adaptive neuro-fuzzy inference 
system (ANFIS) that calculates resonant frequency of the 
microstrip dipole antennas (MSDAs). ANFIS uses 
dipole’s length and width, the antenna substrate’s 
permittivity value and its size as inputs to calculate 
resonant frequency. Results obtained by using ANFIS 
agree quite well with the HFSS results.  
 

I. INTRODUCTION 
Technical literature has broadly investigated Microstrip 
patch antennas (MSPAs). These antennas are lightweight, 
aerodynamically conformable to aircraft and missile 
surfaces, compatible with solid-state devices, and simple 
and inexpensive to construct. Furthermore, by adding 
loads between the patch and the ground plane (i.e. pins 
and varactor diodes), one can design adaptive elements 
containing variable resonant frequency, impedance, 
polarization, and radiation pattern [1]. 
 
Nevertheless, narrow bandwidth is one major drawback of 
the microstrip antennas. Consequently, printed antennas 
work efficiently by closely matching their resonant 
frequency. Therefore, this parameter’s accurate evaluation 
is fundamental in the microstrip antenna design process. 
A correct evaluation of the resonant frequency requires a 
rigorous full-wave model [2]. The Finite Element Method 
(FEM), the Method of Moments (MoM), and Finite 
Difference Method (FDM) etc. have proved useful for 
analysis of such antennas by providing rigorous solutions 
to the present problem. However, this technique requires 
significant computation and is time-consuming. Recently, 
studies developed alternative methods for resonant 
frequency determination using fuzzy logic (FL), neural 
networks (NNs), and combined adaptive neuro-fuzzy 
inference systems (ANFIS) [2-4,6]. 
 

We developed an adaptive neuro-fuzzy inference system 
that calculates resonant frequency of the microstrip dipole 
antennas (MSDAs). Although the MSDAs’ resonant 
frequency greatly depends on the dipole’s length, it also 
depends on the dipole’s width, the antenna substrate’s 
permittivity value, and its size (which affects resonant 
frequency). The past two decades have witnessed 
significant advances in FL and NNs. Some have 
unsuccessfully used FL and NN separately to find the 
MSDA’s resonant frequency. The FL system’s difficulty 
stems from constituting correct membership functions and 
rule base. Insufficient training sets resulted in NNs 
producing unstable results. The synergism of FL systems 
and NN produced a system capable of learning, high-level 
thinking, and reasoning. This tool determines the 
imprecisely-defined complex system’s behaviour. The 
neuron-fuzzy system’s purpose is to apply neural learning 
techniques to identify and tune the neuro-fuzzy system’s 
parameters and structure. These neuro-fuzzy systems 
combine the benefits of these two powerful paradigms 
into a single capsule. Their multi-functionality makes 
them suitable for a wide range of scientific applications. 
Their strengths include fast and accurate learning, good 
generalization capabilities, excellent explanation facilities 
(formed by semantically meaningful fuzzy rules), and can 
accommodate both data and existing knowledge about any 
present problem. 
 
ANFIS can find a model that closely matches the inputs 
with the target. Fuzzy interface system (FIS) is a 
knowledge representative where each fuzzy rule describes 
the system’s local behaviour. Viewing FIS as a feed 
forward network structure where the primary inputs and 
intermediate results are sent to compute the output allows 
us to apply the same back-propagation principle in the 
neural networks. The network structure that implements 
FIS is called ANFIS and employs hybrid learning rules to 
train a Sugeno-style FIS with linear rule outputs. 
 
Among the various methodology combinations in soft 
computing, fuzzy logic and neuro-computing are the most 



common (hence the tem neuro-fuzzy systems). Such 
systems play an important role in the initiation of rules 
from observations. It is a powerful tool for quickly and 
efficiently dealing with imprecision and nonlinearity 
wherever it occurs. Neuro-adaptive learning techniques 
work similarly to neural networks. These techniques allow 
the fuzzy modeling procedure to learn information about a 
data set that computes the membership function 
parameters, allowing the associated fuzzy inference 
system to track the given input/output data. A neural-type 
structure similar to a neural network that maps inputs 
through input and output membership functions and 
associated parameters can be used to interpret the 
input/output map. This eliminates the normal feed forward 
multilayer network’s disadvantages (difficult to 
understand or modify). We explain MSDAs and how to 
use ANFIS to train a fuzzy inference system that 
calculates the resonant frequency. 
 

II. MICROSTRIP DIPOLE ANTENNAS 
Figure 1 shows the microstrip printed dipole antenna 
containing a conventional half-wave dipole loaded with 
two open-circuited stubs. The antenna, printed on a PCB 
substrate, is fed either by cable, surface mount connector, 
or printed transmission line. Where ‘L’ represents length, 
‘W’ is dipole wideness, ‘Ds’ is distance between the 
dipole edges and substrate edges, ‘h' is the substrate 
thickness and ‘ rε ’ is the substrate’s dielectric’s constant 
value. 
 

 
 

Figure.1. Geometry of the microstrip dipole antenna. 
 

We fixed the space between the symmetrical metal 
patches on the substrate at 1mm and the antenna is fed 
from this space. By changing the antenna parameters L, 
W, h, rε  and Ds, we obtained 61 antenna configurations, 
using 51 for training and the rest for testing. Table 1 
shows system training and Table 2 shows test data. We 
used materials used for antenna design such as FR-4, 
RT/duroid and Rogers TMM. We obtained the antenna 
substrate’s thickness and permittivity values from 
producer firms’ catalogs. We used Ansoft High Frequency 
Structure Simulator (HFFS) software, based on FEM, to 
compute and test the data set. 
 
 

 

III. ADAPTIVE NEURO-FUZZY INFERENCE 
SYSTEM 

ANFIS is a multilayer neural network-based fuzzy system 
[5]. Its topology is shown in Figure 2, and the system has 
a total of five layers. In this connectionist structure, the 
input and output nodes represent the descriptors and the 
activity, respectively and in the hidden layers, there are 
nodes functioning as membership function (MFs) and 
rules. This eliminates the disadvantage of a normal feed 
forward multilayer network, which is difficult for an 
observer to understand or to modify. For simplicity, we 
assume that the examined fuzzy inference system has two 
inputs x and y and one output, the activity. To present the 
ANFIS architecture, two fuzzy if-then rules based on first 
order Sugeno model are considered:  
 
Rule 1: If (xis A1) and (yis B1) then (f1= p1x+ q1y+ r1)  
Rule 2: If (xis A2) and (yis B2) then (f2= p2x+ q2y+ r2)  

 
 

Figure.2 The architecture of ANFIS 
 
Where x  and y  are the inputs, iA  and iB  are the fuzzy 
sets, fiare the outputs within the fuzzy region specified by 
the fuzzy rule, pi , qi  and ri  are the design parameters 
that are determined during the training process. In the first 
layer, all the nodes are adaptive nodes with anode 
function: 
 
                1 ( ), 1, 2i Aio x for iμ= =                              (1) 
 
Where x is the input to node i , and iA is the linguistic 
label (low, high, etc.) associated with this node function. 
In other words, 1

io   is the membership function of iA , 
and it specifies the degree to which the given x satisfies 
the quantifier iA . Usually we chose )(xAiμ to be bell-
shaped with maximum equal to 1 and minimum equal to 
0. As the values of parameters },,{ iii cba   change, the 
bell-shaped functions vary accordingly, thus exhibiting 
various form of membership functions on linguistic 
label iA . Parameters in this layer are referred to as premise 
parameters. 
 



Every nodes in second layer is a fixed node labeled Π  
(figure 2), whose output is the product of all the incoming 
signals:    
 
     2 ( ) ( ), 1, 2      i i Ai Bio x y for iω μ μ= = × =         (2) 
 
Each node output represent the firing strength of a rule. In 
layer 3 every node is a fixed node labeled N . The i th 
node calculates the ratio of the i th rule’s firing strength 
to the sum of rules’ firing strengths:  
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Outputs of this layer are called normalized firing 
strengths. Every node i in layer 4 is an adaptive node with 
a node function 

 
4 ( ), 1, 2i i i i i i io f p x q y r iϖ ϖ= = + + =           (4) 

 
where iϖ  is a normalized firing strength from layer 3 and 

},,{ iii rqp  is the parameter set of this node. Parameters 
in this layer are referred to as consequent parameters. The 
single node in the last layer is a fixed node labeled Σ, 
which computes te overall output as the summation of all 
incoming signals: 
 

overall output

2
25 1 = 

1 21

fi i
io fii ii

ω

ϖ
ω ω

⎛ ⎞
⎜ ⎟∑⎜ ⎟=⎝ ⎠∑= =

+=
               (5) 

 
Thus we have constructed an ANFIS system that is 
functionally equivalent to first-order Sugeno fuzzy model. 
 

HYBRID LEARNING ALGORITHM 
From the proposed ANFIS architecture the overall output 
can be expressed as linear combinations of the consequent 
parameters. The output f  in figure 2 can be written as: 
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Which is linear in the consequent parameters 

22111 ,,,, qprqp  and 2r . To train the above ANFIS 
system, the following error measure will be used: 
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Where kf  and  kf∧  are the k th desired and estimated 
outputs, and n is the total number of pairs (inputs-outputs) 
of data in the training data set. The learning algorithms of 
ANFIS consist of the following two parts: (a) the learning 
of the premise parameters by back-propagation and (b) the 
learning of the consequence parameters by least-squares 
estimation [6]. More specifically, in the forward pass of 
the hybrid learning algorithm, functional signals go 
forward till layer 4 and the consequent parameters are 
identified by the least squares estimate. In the backward 
pass, the error rates propagate backward, and the premise 
parameters are updated by the gradient descent. During 
the learning process, the parameters associated with the 
membership functions will change. The computation of 
these parameters is facilitated by a gradient vector, which 
provides a measure of how well the fuzzy inference 
system is modelling the input/output data for a given set 
of parameters. It has been proven that this hybrid 
algorithm is highly efficient in training the ANFIS. 
 
Therefore, in the present study the proposed ANFIS 
model was trained with the backpropogation gradient 
descent method in combination with the least –squares 
method. 
 

IV. RESULTS AND DISCUSSION 
We presented a new approach based on ANFIS to 
calculate MSDA’s resonant frequency. Sixty-one different 
antenna configurations were obtained by changing the 
antenna parameters L, W, h, rε , and Ds. All substrates 
were used for this study came from producer firms’ 
catalogs. Resonant frequencies of antenna configurations 
calculated by used Ansoft-High Frequency Structure 
Simulator (HFFS).  
 
The data is divided in two parts, 51 for training and 10 for 
testing. ANFIS used 51 training data sets in 300 training 
periods. We used triangular membership functions for 
resonant frequency calculations. Error tolerance was 0 and 
the output membership function was linear. We used the 
training data set to train ANFIS, whereas the testing data 
set was used to verify the accuracy and effectiveness of 
trained ANFIS model. L, W, h, rε and Ds are applied to 
the inputs of the ANFIS. The output is resonant 
frequency. After training, 10 testing data sets were used to 
validate the ANFIS model’s accuracy for the resonant 
frequency. The testing data consisted of different types of 
material values and varied in size. The ANFIS model’s 
test performance was defined after comparing the 
simulation results and FIS results.  
 

 
 



                    
Table1. Part of the training set used for ANFIS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table.2. Test data set of ANFIS and results 

 

No rε  
 

h 
[mm] 

W 
[mm] 

L 
[mm] 

Ds 
[mm] 

Simulated 
Result 

f 
[GHz] 

ANFIS 
Result 

f 
[GHz] 

Relative 
Error 
(%) 

1 3.75 2.5 3.00 33 15 4.46 4.41 1.07 
2 4.40 3 4.00 33 15 4.00 3.92 1.83 
3 2.10 2.5 4.50 23 20 6.96 6.90 0.83 
4 4.9 1.91 2.5 29 16 4.68 4.68 0.12 
5 6.0 1.6 3 47 15 2.73 2.68 1.60 

 
 

No rε  
 

h 
[mm] 

W 
[mm] 

L 
[mm] 

Ds 
[mm] 

Simulated 
Result 

f 
[GHz] 

ANFIS 
 Result 

f 
[GHz] 

1 9.20 1.6 3 33 15 3.09 3.09 
2 4.40 1.6 2 33 15 4.49 4.49 
3 2.1 1.6 3 33 30 6.05 6.05 
4 2.1 2.5 3 33 3 5.66 5.66 
5 3.27 2.5 3 19 15 6.86 6.86 
6 6.0 2.5 3 51 15 2.48 2.48 
7 6.0 2.5 4 51 15 2.38 2.38 
8 3.27 6.35 4 51 15 2.88    2.88 
9 3.27 6.35 5 25 20 4.57 4.57 

10 3.27 2.5 5 25 20 5.56 5.56 
11 3.75 2.5 3 33 18 4.47 4.47 
12 4.40 3 4 25 15 4.73 4.73 
13 3.27 1.6 3 51 15 3.34 3.34 
14 2.20 2.5 4.5 23 20 6.84   6.84 
15 2.20 2 4.5 23 19 7.15 7.15 
16 2.20 1.6 3 33 18 5.62 5.62 
17 4.90 2.8 2.25 27 12 4.31 4.31 
18 3.75 3 4.5 37 16 3.85 3.85 
19 5.75 3.5 3 47 22 2.64 2.64 
20 8.90 2.54 1.5 23 26 4.48 4.48 
21 7.50 0.762 3.25 41 28 2.86 2.86 
22 9.20 1.91 1.75 15 8 6.01 6.01 
23 4.70 1.27 2.5 17 10 7.34 7.34 
24 2.54 3.81 3.5 21 14 6.13 6.13 
25 2.2 5.08 4.25 43 12 3.92 3.92 
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Figure.3.Comparison of training data set results and FIS 

results for resonant frequency 
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Figure.4.Comparison of testing data set results and FIS 

results for resonant frequency 
 

In table 1, the simulated result f -labeled column shows 
the HFSS results while the ANFIS result f-labeled column 
shows the FIS results. In table 2, the ANFIS model 
calculates the resonant frequency with 1.07%, 1.83%, 
0.83%, 0.12%, and 1.60% with relative error value, 
respectively. These results show the ANFIS’s mean 
accuracy at 98.91%. While Figure 3 compares the results 
between the training data set and FIS output, Figure 4 
shows the testing data set and FIS output.  
 

V. CONCLUSION 
As a consequence, a method based on the ANFIS for 
computing the resonant frequency of Microstrip dipole 
antennas has been presented. The hybrid-learning 
algorithm is used to identify the ANFIS’ parameters. The 
results of the ANFIS are in very good agreement with the 
simulated.  We hope that the ANFIS will find widespread 
applications in solving antenna and microwave integrated-
circuit problems. 
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