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ABSTRACT

We design sliding mode controllers by using a nonlinear
programming approach.  We show that by appropriate
selection of the  objective function and the constraints, it is
possible to obtain  sliding mode controller parameters by
solving a sequence of nonlinear programming problems. We
illustrate validity of our approach  by stabilizing an inverted
pendulum.

I.  INTRODUCTION

In this paper we introduce a nonlinear programming
(NLP) approach for sliding mode control of nonlinear
dynamic systems.  By using  NLP techniques we obtain a
control input which at first steers the state of a nonlinear
dynamic system towards a stable subspace in the state
space, and once it enters a prespecified neighborhood of
the subspace the control input steers it towards the origin
while keeping it in this neighborhood. The input is
designed to satisfy possibly nonlinear, even nonconvex
constraints and optimize a given nonlinear objective
function. The mathematical tool that we utilize for this
purpose allows us to consider such problems.

We firstly present a brief background on the sliding mode
control (SMC) problem. Following this we model the
SMC problem as a NLP problem. It will be shown that by
appropriate selection of the objective function and the
constraints it is possible to obtain a fast reaching
performance and improve the chattering.  In the section of
Experimental Results, we apply the proposed approach to
an inverted pendulum system.  In the concluding section
we make comments on the performance of the controller.

Sliding mode control aims to generate a desired
trajectory for a given system by using  an input which
may be discontinuous function of the system states. SMC
techniques have received increasing attention of the
researchers  since the survey paper of Utkin [1]. In the
beginning the researchers focused on analysis of the

second order systems using graphical notions. In the
following decades SMC techniques have been generalized
to more general classes of systems. These results take
place in  ([2]-[4]) and the references therein. It has been
emphasized in the literature that the superiority of SMC is
apparent in its performance in the presence of  system
modelling errors and  disturbances.  In this paper by using
NLP approaches we select optimal SMC inputs from a set
of admissible inputs at a sequence of updating instants.
For this optimization problem we use sharp augmented
Lagrangians that work for  nonconvex problems as well
as the convex ones. We construct a dual problem with
respect to the augmented Lagrangian. In order to solve the
dual problem we use the Modified Subgradient Algorithm
(MSA) introduced in [5]. The algorithm used here does
not require any convexity and differentiability
assumptions, therefore it is applicable to a large class of
problems. The gradient and subgradient methods and their
different versions are investigated in ([7],[8]). The duality
gap which is a major problem in the NLP has been
investigated and the theoretical tools for zero duality  gap
condition have been improved extensively in [5],[6],
[9],[10] and [11].

In [12] the sliding mode controller design by using NLP
tools is investigated.  The paper partition the simulation
time in two phases: The reaching and the sliding phases.
Each phase is associated with an appropriate objective
function and constraints. In each phase the sliding mode
controller structure is updated  at certain time instants by
using a solution of a  NLP problem. In [12],  the
unification the objective functions which results in a
single phase is also presented.  In the unified approach a
pareto optimal solution of a NLP problem is used to
update the sliding mode controller structure.

One of the significant researches in the literature that
considers optimal control problem in the NLP framework
belongs to Betts [13]. In [13], the optimal control problem
is viewed as an infinite-dimensional extension of the NLP
problem. Considering that practical methods for solving



these problems require Newton-based iterations with a
finite set of variables and constraints, the infinite-
dimensional problem is converted to a finite-dimensional
approximation. It is shown in [13] that the so-formed
problem is "large and sparse", and iterative approaches
that  exploit these properties are proposed to solve the
problem.

II.  PROBLEM STATEMENT

In this section we briefly introduce the SMC problem and
thereafter present our approach and its major tool, the
modified subgradient algorithm.

Consider the single-input single-output n-th order
nonlinear differential equation
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where [ ]TnxxxX )1( −= K&  is the state vector and  u is
the scalar control input. The scalar-valued functions a and
b are continuous with continuous bounded derivatives
with respect to the components of X. It is assumed that

0)( ≠Xb   for all nRX ∈ .

The strategy in SMC consists of two steps: 1) Choose a
stable subspace of nR  2) Design a control input that
steers the trajectory of (1), at first to a prespecified
neighborhood of  a stable subspace, then once it reaches
to this neighborhood, it steers towards the origin while
keeping the states in this neighborhood of the subspace.
Choosing a stable subspace guarantees that every
trajectory restricted to the neighborhood of the subspace
reaches to the origin asymptotically ([1]-[4]). In this paper
we present an algorithm that drives the trajectories to the
origin using the two steps mentioned above.
Consider (n-1)-dimensional subspace of nR
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where G is a row matrix.  Also define GX S: =  for each

nRX ∈  and consider the positive definite  function
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This function decreases as X gets closer to the subspace,
and reaches zero value on the subspace. Let us design an
input u for the system (1) so that the time derivative of V

becomes negative. Negativity of 
dt
dV  in some interval of t

means that V decreases in that interval. Hence the
trajectory approaches the subspace. The common form of

u used in the literature that yields negative 
dt
dV  is

(s)Γ (X) u (X)u(X)uu req sgn1 ++++= K    (4)

where  equ  is called equivalent control input which is a
fixed function of  X, each of the following r terms

switches between some fixed functions of  X to cancel

possibly positive terms in 
dt
dV , and the last term is used

to ensure reaching to the subspace in finite time. There
are numerous methods for the computation of the input u
([1]-[4]).

In this paper we propose a  NLP technique to compute the
input  u  which yields fast approaching perfomance in the
phase of reaching the neighborhood of  the subspace, and
improves chattering characteristics in the neighborhood.
Even though we try to make this article self-contained,
one may refer to [12] for a more detailed treatment of  the
mathematical tools. For the sake of simplicity in
presentation we consider the input having the form

KXu =  where [ ] Ω∈= nkkK K1  is a compact,

possibly nonconvex, subset of nR .  The feedback gain
parameter K  is found as follows:
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where the NLP problems in the Reaching and the Sliding
phases are defined shortly. In (5), the positive constant
δ characterizes the neighborhood of the subspace, and
depending on the system specifications its value is
selected by the designer. The algorithm ends when a
prespecified stop criterion is satisfied, for instance, it ends
when the trajectory reaches into a prespecified
neighborhood of the origin

The NLP problems for the Reaching and Sliding phases
are defined as follows:.

The NLP Problem for the Reaching Phase

Using the MSA  solve the following problem for K
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The Reaching Algorithm is executed as long as the
current state of the trajectory is outside −δ neighborhood
of the sliding subspace. In the reaching phase the

minimization of the objective function 
dt
dV serves for a

speedy arrival in the neigborhood of the sliding subspace.
When η   is a positive number the first constraint  makes
sure that V strictly decreases, therefore,  approaches the
subspace. The factor |s| on the right hand side requires

larger 
dt
dV  values as the distance of the trajectory from

the sliding subspace increases, and vice versa. For a



positive α ,  the second constraint imposes upper limit on
the size of the input. In the third constraint, the set Ω
contains the admissible feedback coefficients. This set is
required to be compact which may contain discrete or
continuous elements.

The NLP Problem for the Sliding Phase

Using the MSA  solve the following problem for K
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where w is a vector whose initial point is the origin and
end point is the projection of X on the sliding subspace. A
possible special case in the sliding algorithm occurs when
w=0. When  w=0, the objective function in (7) equals
zero. We handle this case by switching to the Reaching
Algorithm, which is well defined there and suitable for
our control objective.

The Overall Algorithm

Let the initial time and state be  t0 and 0X  respectively.
Depending on the location of the states in the state space,
our main algorithm is as follow:

Step 1. (Initialization Step) Assign initial values to the
time t and the state X , i.e., 0tt ← , 0XX ← .
Step 2. (δ -checking Step) Check  whether δ≤s  or not.

If δ>s then solve the NLP problem associated with the

Reaching Phase (6), else if δ≤s  then solve the NLP
problem associated with the Sliding Phase (7) to find K
and calculate KXu = .
Step 3. Use u found in step 2 and run system (1) from t to

tt ∆+ .
Step 4.  Update the time and the state, and go to Step 2.
The updating interval t∆  is determined regarding the
smallest time constant of the differential equation that
models the system.

The Modified Subgradient Algorithm

The major tool that we use for solving the NLP problem
is the the modified subgradient algorithm. In the literature
it has the best performance in eliminating the duality gaps
[5].  In this part,  the MSA algorithm is explained for the
problems that has �for simplicity in presentation- two
constraints. It is straightforward to generalize it to more
than two constraint case.

NLP problems can be brought into the standart form as in
the following problem (P):
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where [ ]TKhKhKh )()()( 21=  is the constraint vector.
In the sequel we call (8) the primal problem. For problem
(8), we use the sharp Lagrangian function

h(K)vh(K)cf(K)L(K,v,c) T++=       (9)

where 2Rv ∈ and +∈ Rc .  Defining the dual function as
L(K,v,c)H(v,c)

ΩK∈
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the dual problem (P*) is
 H(v,c)

RR(v,c) m
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Using the definitions above the MSA is as follows:
Initialization.Choose a pair )c,(v 11  with 2

1 R v ∈ ,

0c1 ≥ , and  let j=1, and go to Step 1.
Step 1. Given ),c(v jj , solve the following subproblem:
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K subject to
)c,H(v:h(K) v- h(K)cf(K) min jjjjK (12)

Let jK  be the solution of (12).  If 0=)h(K j , then stop;

),c(v jj  is an optimal solution to the dual problem and

jK  is a solution to (8), so )f(K j  is the optimal value of
problem (8). Otherwise, go to Step 2.
Step 2. Update ),c(v jj  by
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where jz  and jε   are positive scalar step sizes defined
in the sequel. Replace j by j+1 and go to Step 1.
Step size calculation:
Let us consider the pair ),c(v jj  and calculate

h(K)}-vh(K)c{ f(K)),cH(v jjΩKjj +=
∈

min  and let

0 )h(K j ≠  for the corresponding jK , which means that

jK  is not optimal.   Then the step size parameter   z j
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where jH  is an upper bound for the dual function. For a
rigorous treatment of the MSA one may refer to [5].

3. EXPERIMENTAL RESULTS

In this section we apply the theoretical results  presented
in the preceding section to an inverted pendulum
stabilization problem.  The stabilization problem is to
design a controller  to keep the pendulum in its unstable



equilibrium point in the presence of disturbances. Because
of its dynamically rich structure, inverted pendulum
system is widely used in the literature to check validity of
control strategies ([15], [16]).

Next we describe an inverted pendulum and present its
nonlinear dynamic model. An inverted pendulum
mounted on a motor-driven cart is shown in Figure 1. The
inverted pendulum is intrinsically unstable, that is it may
fall over any time in any direction unless a suitable
control force is applied. Here we consider only a-two
dimensional problem that the pendulum moves only in x-
y plane. For this inverted pendulum system; m is mass of
the rod which is assumed to be concentrated at the and of
the rod, l is length of the rod, M is mass of the cart, and b
is friction constant. The angle of the rod from the vertical
line is θ  and the distance in horizantal plane from the
reference point is x.

Figure 1 Inverted Pendulum system

Nonlinear model of inverted pendulum system is as
follows ( [17], [18]):
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where xx =:1 , xx &=:2 , θ=:3x , θ&=:4x . Table 1
contains typical parameter values for an inverted
pendulum.

Parameters Symbol Value Unit
Mass of the Cart M 3 kg
Mass of the i. p. m 0.5 kg
Length of the i. p. l 0.5 m
Friction Constant b 2 kg/s
Gravitional Force g 9.8 m/s2

Table 1 Typical parameter values for an inverted
pendulum.

Using the parameter values given in Table 1, the dynamic
model becomes:
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A stable sliding subspace for this model can be found as

[ ]5.155.12=G . Regarding this subspace we design
a sliding controller for this system using the NLP
approach of the previous section. Then we simulate the
inverted pendulum system with the the sliding mode
controller obtained by the NLP tools  when the initial
conditions are perturbed from the equilibrium state

[ ]TX 0000= .
Let us choose the sliding band parameter as 02.0=δ  and
write the NLP problems associated with the reaching part
(6) and the sliding part (7) as
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where { }4,3,2,1,1111:,, 41 =≤≤−=Ω ikkk iK , 8=α

005.0=η  and X& is given by expression (15). The
second-simulation results for the perturbed initial
condition [ ]0001.0=Tx  are given in Figures 2 and 3.

Figure 2 The  trajectories relative position with respect to
the sliding sub space and SMC input



Figure 3 The states of the inverted pendulum versus time

Figures 2 and 3 show that starting from the pertubed
initial conditions the states reach back to their equilibrium
points. In other words, the trajectory reaches the sliding
subspace and remains there in the subsequent times. The
speed of the stabilization is comparable to that existing in
the literature [17].  In the process of the stabilization the
control input obeys the constraints given by (16) and (17).

IV. CONCLUSION
A novel algorithm to design a sliding mode controller
using nonlinear programming techniques is introduced. It
has been illustrated that in the NLP domain modelling the
system specifications (i.e, constraints) is easier, and the
solution procedure involves only the algebraic
manipulations (not the differential equations ) and more
efficient. It is demonstrated that the algorithm works for
stabilization of an inverted pendulum.
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