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Abstract 
 

Abstract— Association rule hiding has been playing a very 

important rule in Privacy Preserving Data Mining and has 

been gaining the attention of many researchers. Many 

algorithms are developed with authors claiming the 

superiority of their algorithms. In this respect, we selectively 

choose some state of the art approaches in the context of 

association rule hiding heuristics and border-based 

approaches and examine their results on Mushroom and 

Retail datasets. 

 

1. Introduction 
 

Applications of data mining are increasing every day. However, 

one of the side effects of data mining is privacy; the more we 

want accurate data mining results, the more we need to breach 

privacies of individuals and organizations. There are three 

directions related privacy in this regard; namely data privacy, 

knowledge privacy and owner privacy [1]. The first direction 

concerns with raw data that may reveal confidential information 

like medical records, criminal records, records related to 

national or international security, etc. The second direction 

concerns with results of data mining such as classification, 

clustering and segmentation, sequence analysis, etc. Association 

rule hiding comes under this category. The third direction deals 

with sharing data between parties for mining purposes without 

letting the other party know the content of these data. This 

problem is commonly known as Secure Multiparty Computation 

(SMC) [2]. 

 Our contribution here includes the following: First, we 

present the most common heuristic approaches for solving ARH 

problem along with the border-based approaches. Second, we 

evaluate their behavior on Mushroom and Retail datasets. 

Finally, a number of suggestions are provided to improve these 

algorithms. 

 The rest of this paper is organized as follows. In 

section 2, we state out the problem and provide the necessary 

background. In section 3, we present the heuristic and border-

based approaches. Experimental evaluation is shown in section 

4. Section 5 concludes this work.  

 

2. Problem Formulation  

Let £ = {i1  ,i2 ,i3 ….im} be a set of items in a dataset D. 

Any subset I ϵ  T is called an itemset. An Itemset is called 

frequent if its frequency in the dataset is greater than (or equal to 

certain threshold value called support threshold. Association 

rule is an implication of the form X→ Y where X  is a frequent 

itemset called rule antecedent and Y is a frequent itemset called 

rule consequent and X and Y are disjoint i.e. X ∩Y = ∅ [3]. 

Association rule is called strong (or interesting) association rule 

if its confidence is greater than a certain threshold value called 

confidence threshold. 

Support and confidence are mathematical measures and they 

are calculated as follows: 

 

Support, s (X→Y)         =              (σ(X∪Y))/(|D|) (1)     

Confidence, c (X →Y)  =                  (σ(X∪Y))/(σ(X))         (2) 

 

where X is the rule antecedent , Y is the rule consequent, 

σ(X  U Y ) is number of transactions in which both X and Y 

occur , σ(X) number  of transactions in which X occur, |D| is the 

size of the database. These thresholds are usually defined by the 

user or the database owner. 

 Support and confidence have many interesting 

applications and they can reveal patterns unknown even to the 

database owner. However, these patterns could sometimes be 

sensitive due to legal constraints or because of the competition 

between companies [4]. Thus, association rule hiding concerns 

with finding efficient algorithms able to hide sensitive patterns 

with minimal impact on the database. Actually,  Atallah et.al. 

[5]proves that the optimal solution i.e. removing sensitive 

patterns from frequent itemset list without affecting non-

sensitive ones , is NP-hard.  

In general, Association rule hiding algorithms should achieve at 

least one of the following goals under the same support and 

confidence thresholds or higher [6]: 

 No sensitive pattern determined by the database owner 

is revealed after the application of ARH algorithm. 

 Non-sensitive pattern that can be mined from the 

original database should also be mined from the 

sanitized database. Such original pattern that could not 

be mined from the sanitized database is known as 

missing pattern. 

 No new pattern generates from the sanitized database. 

Such patterns are known as false or ghost patterns. 

 Database distortion is minimum. 

In order to achieve these goals, association rule hiding 

algorithms carefully select one transaction at a time, called 

victim transaction, to modify and an item in this transaction, 

called victim item, such that the deletion of this item reduces the 

support of the sensitive pattern with as minimum impact on the 
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non-sensitive patterns as possible. This process continues until 

sensitive pattern support equals minimum support -1. 

 

3. Sanitation Algorithms 
 

In this section, we select some popular heuristic approaches that 

have been suggested by their authors and compare them with 

three border-based approaches. We emphasize here that the core 

of each algorithm is the candidate selection process, which is to 

effectively find the victim items with as less impact on the 

original dataset as possible. We should also mention that the 

border-based algorithms discussed here are not free from 

heuristics. 

 

3.1 Heuristic Approaches 

 
As we will see, these approaches carefully select a set of 

transactions and sanitize them in order to hide sensitive 

knowledge. These algorithms are simple, fast, efficient, and 

scalable. However, they do not guarantee the best solution and 

usually suffer from the local optima problem [1]. 

 

3.1.1.  Algorithm 2.b. 

This algorithm was proposed by Verykios et.al [7], which is 

considered the first to address the problem by reducing either 

support or confidence of the sensitive pattern. Here, sensitive 

itemsets are sorted by their size then support in a decreasing 

order. Supporting transactions are sorted in an ascending order 

of transaction size. The item in the sensitive itemset with the 

highest support is the victim item. In the next step, starting with 

the first sensitive itemset in order, we remove the victim item 

from the first sensitive transaction in the list and propagate the 

results. In propagation, we reduce the support of any other 

sensitive pattern affected by this deletion and remove the 

corresponding sensitive transaction from its supporting 

transaction list. The process continues until the support of the 

current itemset goes below support threshold.  

3.1.2 Item Grouping Algorithm (IGA) 

 
This approach is based on clustering the sensitive patterns we 
need to hide into common patterns called restrictive group. Each 
restrictive group has a label. The label is an item that belongs to 
the restrictive group and has the smallest support among other 
items in the group. Another term is the conflicting sensitive 
transactions, which means transactions supporting more than 
one sensitive pattern. These transactions have the priority to 
modify according to the degree of conflict. Thus when removing 
the label from the conflicting sensitive transactions, we take care 
of more than one restrictive pattern at a time. Using this 
approach, we achieve the purpose of the hiding goal and the 
minimal impact on the database at the same time.  

 However, when grouping restrictive patterns, there 

can be an overlapping between groups because clustering is 

done in a pair-wise basis and is not transitive. The way of 

removing the overlapping is defined in [8]. Sensitive 

transactions have a number associated with them used for 

counting number of sensitive patterns the transaction supports. 

This number is called the degree of conflict. Transactions are 

sorted in a decreasing order according to degree of conflict. 

Finally, for each sensitive pattern, remove the label of the 

restrictive group that sensitive pattern belongs to from the first 

sensitive transaction in order [8]. 

 

3.1.3. Hybrid Approach 

The advantage of this algorithms is that it considers non-

sensitive itemsets during sanitizations. This approach is a 

combination of two approaches. The first approach is called 

Aggregate approach in which we find the sensitive transactions 

and sort them according to supporting sensitive/non-sensitive 

ratio. The transaction with the maximum ratio is selected as the 

victim transaction. In the second step Disaggregate approach is 

used to find the victim item within the transaction found in the 

previous step using the same criteria i.e. item with maximum 

sensitive/non-sensitive ratio[9]. This makes the Hybrid approach 

require many calculations. Actually, the worst case 

computational complexity of this algorithm is O( ) 

[9]. In our implementation, we reduced the search space by first 

taking the minimum set of the sensitive frequent itemsets and 

then continuously updating the search space. This is done by 

continuously deleting any transaction that turns to be non-

sensitive from the sensitive transaction list and any item that 

does not support any sensitive itemset within the sensitive 

transaction. 

3.1.4.  Sliding Window Algorithm (SWA) 

 

In this algorithm, for each K transaction in the database (K is the 

window size), we sort sensitive transactions ascendingly of 

transaction size. Then for each sensitive transaction, we count 

the frequency of each item that belongs to the sensitive pattern. 

Items inside each transaction are then sorted in a descending 

order of their frequencies. Item with the highest frequency is the 

victim item [10]. Finally, we remove the victim item defined in 

the previous step from the first transaction in order. 

 

3.2. Border-based Approaches 

 

This and the following algorithms are based in on the concept of 

the border theory [11]. For convenience, we introduce this 

concept here. For any set of itemsets U, an itemset X  upper 

border of U (also called positive border) (U), if 1) (U) 

is an anti-chain collection of sets. 2)  Y  U such that Y  X. 

Similarly, an itemset X  lower border of U (also called 

negative border) (U), if 1) (U) is an anti-chain 

collection of sets. 2)  Y  U such that Y  X [12]. In other 

words, the upper border is the maximum frequent itemsets from 

which all frequent itemsets are generated and the lower border is 

the minimum set of infrequent itemsets and the border is the 

union between them. These two concepts are direct 

consequences from the Apriori property since any frequent 

itemset implies that all its subsets are also frequent and no 

frequent superset could be generated from a non-frequent one. 

Thus, these two concepts are very useful since they allow us to 

track the impact of deleting victim items on the database during 

the hiding process. In all these algorithms, we try move the 

sensitive itemsets to be on the negative border side while 

keeping other elements in the positive border intact. That is why 

 and  are usually used to denote maximum frequent 

non-sensitive itemsets and minimum set of sensitive itemsets 

respectively. 
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3.2.1. Border-based algorithm(BBA) 
 

The key idea of this algorithm is to keep track of the positive 

border elements by assigning them weights showing their 

vulnerability of being affected by item deletion. These weights 

are continuously updated according to the current support of 

their corresponding itemsets. The authors suggest the following 

equation to track these weights: 

 

W (I ) =  

 

where  is an integer larger than number of revised positive 

border itemsets,  represents database during sanitization. 

 In order to find the victim item, the algorithm 

associates an interval, called impact interval, with each item 

belonging to the sensitive itemset where the left boundary of the 

interval represents the summation of the weights of the direct 

positive border elements. An itemset X is called direct positive 

border of sensitive itemset Y if X is a positive border element 

and X  Y. The right boundary is the summation of the weights 

of all relevant positive border elements including the direct 

positive ones. Upon finding the impact interval of each item on 

the border elements, a partial order relation  is used to find the 

item with minimal impact on the border [12]. 

 In order to reduce the search space for finding the 

victim transaction, the algorithm associates a vector map with 

each supporting sensitive transaction. The length of this vector 

equals to | | i.e. the positive border elements supported by 

this transaction and will be affected when hiding sensitive 

itemset X and choosing item i as victim item. Then the victim 

transaction is the one with the least weight summation [12]. 

 

3.2.2. MaxMin1 Algorithm 

 

This and the next algorithm are based on the max-min principle 

used in decision theory to maximize the minimum profit. They 

hide sensitive itemsets according to a set of theories devised by 

the authors in [13, 14]. First, we find  and    and sort 

elements in  in increasing order of support and decreasing 

order of length. Then, for each element X in  , we find 

. For each item, called tentative victim item, in X, we 

construct a list called affinity list defining the possibly affected 

positive border elements. From each list, we choose the itemsets 

with the minimum support and from the result; we take the 

elements with the maximum support. This final list is called 

max-min list from which we randomly select an itemset and its 

corresponding tentative victim item in the affinity list is the 

victim item. Finally, we remove this item from the first 

transaction supporting the sensitive itemset.  

 

3.2.3. MaxMin2 Algorithm 
 

This algorithm improves over the previous algorithm. It 

distinguishes between three cases the first case scenario is when 

the max-min itemsets  belong to only one tentative victim 

item j. Here we delete this item from transactions supporting the 

current sensitive itemset but not supporting any of the itemsets 

in the max-min list. Otherwise, it chooses a transaction at 

random. The second case scenario is when the max-min itemsets 

are all derived from different tentative victim items. In this case, 

the algorithm iterates over each max-min itemset relevant to 

each tentative victim item to find the transaction supporting 

current sensitive itemset but not supporting any of the itemsets 

in the max-min list relevant to that item. If there are any, it 

removes the victim item from a transaction in the resultant list. 

When all cases fail, the algorithm iterates over all possible pair 

itemsets in the max-min list to find transactions affecting only 

one list, if there are any, it removes the corresponding victim 

item from one of them. Otherwise, it removes victim item from a 

random selected transaction supporting the first list [14, 15]. 

 

4. Experimental Results 

 
In this section, we present the software used to implement those 
algorithms as well as the measurements and the datasets used for 
evaluation. 

 

4.1. Software Description 

All the algorithms were coded in Visual Studio 2013 with C#. 
For Frequent itemset generation, we used FPgrowth algorithm 
implemented in java using SPMF library [17]. We also used 
IKVM.openJDK.Core library [18] to link java codes in .Net 
environment. 

 We run the algorithms on an Intel(R) Core(TM) i5-
3230M CPU @ 2.60GHz (4 CPUs), ~2.6GHz with 8084MB 
RAM available memory. 

 

4.2. Description of the real datasets 

For algorithms evaluation, we used two publically available 
datasets, namely, Mushroom from UCI Machine Learning 
Repository and Retail dataset from an anonymous Belgian retail 
store. The two datasets can also be found here [13]. Description 
of these datasets is shown in Table 1. Threshold values and 
number of randomly selected itemsets to be sensitive are shown 
in Table 2. 

 
Table 1.Datasets descriptions 

Dataset 
Name 

# 
Transactions 

# 
Items 

Average 
Transaction 
Length 

Mushroom 8124 119 23.0 

Retail 88162 16470 11.0 

 

For algorithms BBA, MaxMin1 and MaxMin2, we compare our 
implementation results with results in [14, 15] using a sample 
dataset mentioned in [12, 16]. For this particular example, we 
use the same notion used in [14, 15]. As suggested by the 
authors, the notion m/n is used to measure the performance of 
each algorithm where m indicates the number of raw database 
changes and n indicates number of non-sensitive frequent 
itemsets accidently hidden. The winning algorithm is underlined 
[14, 15]. 

Because both MaxMin1 and MaxMin2 choose the victim item 
and/or transactions at random in some cases, we run these 
algorithms twice. By comparing results in table (3), we see that 
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our implementation for both MaxMin1 and MaxMin2 are 
approximately similar to the results in [14, 15]. However, our 
implementation of BBA algorithm shows better results. 

Table 2. Datasets and parameters used 
 

Dataset 

Name 

Relative 

Min 

Support 

(%) 

Absolute 

Support 

Non 

Singleton 

Frequent 

İtemsets 

# 

Sensitive 

Itemsets(with 

supersets) 

Mushroom 25 2031 5510 

5(208) 

13(803) 

25(1208) 

50(1670) 

100(2894) 

150(3292) 

200(3374) 

300(3964) 

Retail 0.14 123.43 3231 

5(7) 

13(15) 

25(37) 

50(83) 

100(134) 

150(360) 

 

Table 3 Comparison between our results and results in [14, 15] for 

evaluating Border-based, MaxMin1 and MaxMin2 algorithms (our 

implementations are shown with background color). 
 

Sensitive 

Itemsets  

BBA BBA 

(our 

imp)   

Max

Min1 

MaxMin1 

(our imp)  

Ma

xM

in2  

 

MaxMin2  

(our imp) 

Ab 2/0 2/0  2/0 2/0 – 2/0 2/0 2/0 – 2/0 

Ad 4/1 4/1 4/1 4/0 – 4/0  4/0 4/1 – 4/1 

Cd 4/2 4/1 4/3 4/3 - 4/3 4/3 4/1 – 4/1  

Abd 1/0 1/0 1/0 1/0 – 1/0 1/0 1/0 – 1/0 

Cde 1/1 1/1 1 /2 1/3 – 1/2 1/1 1/1 – 1/1 

ab, Acd 4/1 3/0 3/0 3/0 – 3/0 3/0 3/0 – 3/0  

ac, abd 4/1 3/0 3/1 3/0 – 3/1 3/0 3/0 – 4/1  

ad, bcd 5/1 5/0 5/1 5/1 – 5/1 5/0 5/1 – 5/1  

bc, cde 2/1 2/1 2/1 2/1 – 3/3 2/1 3/1 – 3/1 

ce, abd 2/0 2/1 2/1 2/1 – 2/1 2/0 2/1 – 2/0  

ac, abd, cde 4/1 3/1 4/2 4/3 – 4/3 3/1 4/1 – 3/1 

ab, de, acd 5/2 4/1 4/1 4/1 – 4/1 3/0 4/0 – 4/0 

ac, ad, bcd 5/0 5/0 6/1 6/2 – 6/2 5/0 5/0 – 5/0 

abd, acd, cde 4/2 3/1 3/2 3/2 – 3/2 3/2 3/2 – 3/2 

abd, acd, bcd 4/0 4/0 3/0 3/0 – 3/2 3/0 4/0 – 4/0 

ab, bc, cd, de 9/2 7/0 8/2 8/2 – 8/2 7/0 7/0 – 7/0 

 
4.3. Effectiveness Measures 

Here we evaluate the algorithms using two measurements 
namely; Misses Costs and database difference size suggested by 
authors in [8]. We should also mention that in all these 

algorithms no hiding failures or artificial patterns found. We set 
disclosure threshold at 0.0 in IGA and SWA. For SWA, we set 
K (window size) at 100. 

 Misses Cost (MC): measures the amount of legitimate 
patterns accidently deleted due to sanitization. Misses cost is 
calculated by:  
 

MC =  

where   is the non-restrictive patterns mined from 

database X. 

 Difference between the original (D)  and sanitized datasets 
( ), is measured as: 

 Diff (D, ) =   

where n is the number of distinct items in the original dataset 
and   is the frequency of the Item in dataset X. This later 

measurement is also known as item-wise accuracy, as opposed 
to transaction-wise accuracy, which means number of 
transactions that remain intact after sanitization [9]. 

5. Evaluation 

To evaluate the algorithms, we choose two publically published 
datasets with different characteristics in terms of number of 
transactions, number of items and average transaction length as 
shown in table (1). From the frequent itemsets generated in each 
dataset, we randomly selected six sets and eight sets of non-
singleton frequent itemsets to be sensitive in Retail and 
Mushroom respectively. The results of these selections are 
shown in table (2). Thus for the sake of comparison, we used the 
same selected sensitive itemsets in each algorithm. In case of 
Sliding Window Algorithm, we set disclosure threshold value at 
minimum support value to hide sensitive itemsets completely. 
We also set K=|D|, i.e. size of the window equals size of the 
dataset at hand. 

 

Figure (1) effect of hiding sensitive patterns on Retail dataset 
using Missing-Costs measurement. 
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 Figure (2) effect of hiding sensitive patters on Retail dataset 
using Dataset difference size measurement. 

Figures (1, 2) show the effect of hiding selected itemsets on 
Retail datasets. From the figures, we see that the algorithms 
show approximately the same performance in terms of dataset 
difference size. However, the missing costs are different. This is 
because the items chosen for deletion are different with the 
different algorithms. We also see that BBA, MaxMin2 and 
Hybrid approaches show the best missing costs performance. 

 

Figure (3) effect of hiding sensitive patterns on Mushroom 
dataset using Missing-Costs measurement. 

Using Mushroom dataset, we see in figure (3) that Hybrid and 
BBA show the best missing costs performance while MaxMin1 
and MaxMin2 performances degenerate with the increasing 
number of sensitive itemsets. 

 

Figure (4) effect of hiding sensitive patterns on Mushroom 

dataset using DB-difference-size measurement. 

 

In terms of dataset difference size, algorithm alg.2b and SWA 

shows the best performance in this particular experiment. From 

the figures, we see that the behavior of the algorithms turns to 

be more stable in Mushroom and turns to increase in Retail 

dataset. The reason is the nature of these datasets. Items are 

more correlated in Mushroom than in Retail; choosing five 

random different itemsets to be sensitive results in 7 and 208 

sensitive itemsets in Retail and Mushroom respectively (see 

table 2) as an example.  

 

6. Conclusion 

Hiding sensitive itemsets depends on the difference between the 
support of the sensitive itemset and the minimum support; the 
larger this difference, the more we need to modify the original 
dataset. Many algorithms are developed to efficiently hide 
sensitive itemsets with minimal impact on the original datasets. 
In this paper, we discussed a number of heuristic and border-
based approaches to solve association rules hiding problem and 
applied them on Mushroom and Retail datasets. Experimental 
results show that BBA, Hybrid and MaxMin2 algorithms have 
the best performance. Despite its simplicity, alg.2b algorithm 
shows good performance. Hybrid Algorithm shows good 
missing costs and database-difference size performances. 
However, it is slow and requires many computations. This 
algorithm could be improved dramatically by reducing the 
search space since many irrelevant transactions and items are 
examined. We can also reduce the number of sensitive itemsets 
by hiding only the minimum set of sensitive itemsets according 
to the Apriori principle as in BBA algorithm. 

7.References 

 
[1] C.C. Aggarwal, J.Han, Frequent Pattern Mining, Springer, 

2014. 
[2] C.Clifton,J.Vaidya. Privacy-Preserving Data Mining: Why, 

How, and When, IEEE, 2004. 
[3] R. Agrawal, T. Imielinski, and A. Swami. Mining 

association rules between sets of items in large databases. 
In Proc. of the ACM SIGMOD Conference on 
Management of Data,1993 

1177



[4] H.Q.Le, S.Arch-int,N.Arch-int,Association Rule Hiding 
Based on Intersection Lattice, Hindawi Publishing 
Corporation,Volume 2013, Article ID 210405,2013. 

[5] M. Atallah, E. Bertino, A. Elmagarmid, M. Ibrahim, and V. 
S. Verykios. Disclosure limitation of sensitive rules, 1999. 

[6] A.G.Divanis,V.S.Verykios.,Association Rule Hiding for 
Data Mining, vol 41,Springer,2010. 

[7] E. Dasseni, V. S. Verykios, A. K. Elmagarmid, and E. 
Bertino. Hiding Association Rules by Using Confidence 
and Support. In Proc. of the 4th Information Hiding 
Workshop,  April 2001. 

[8] S. Oliveira, O. Zaiane, Privacy preserving frequent itemset 
mining, Proceedings of the IEEE ICDM Workshop on 
Privacy, Security and Data Mining, December 2002. 

[9] Amiri. Dare to share: Protecting sensitive knowledge with 
data sanitization. Decision 

[10] S. R. M. Oliveira and O. R. Zaiane. An Efficient One-Scan 
Sanitization For Improving The Balance Between Privacy 
And Knowledge Discovery, June 2003. 

[11] H. Mannila and H. Toivonen. Levelwise search and borders 
of theories in knowledge discovery. Data Mining and 
Knowledge Discovery, 1(3):241–258, 1997. 

[12] X. Sun and P. S. Yu. A border–based approach for hiding 
sensitive frequent itemsets. In Proceedings of the 5th IEEE 
International Conference on Data Mining (ICDM), pages 
426– 433, 2005. 

[13] http://fimi.ua.ac.be/ 
[14] G. V. Moustakides and V. S. Verykios. A max–min 

approach for hiding frequent itemsets. In Workshops 
Proceedings of the 6th IEEE International Conference on 
Data Mining (ICDM), pages 502–506, 2006. 

[15] G. V. Moustakides and V. S. Verykios. A maxmin 
approach for hiding frequent itemsets. Data and Knowledge 
Engineering, 65(1):75–89, 2008. 

[16] X. Sun and P. S. Yu. Hiding sensitive frequent itemsets by 
a border–based approach. Computing science and 
engineering , 1 (1):74–94, 2007. 

[17] http://www.philippe-fournier-
viger.com/spmf/http://www.ikvm.net/devguide/net2java.ht
ml 

 

 

 

 

 

1178


