
Towards Association Rule Hiding

Heuristics vs Border-based Approaches

Afrah Farea
1
, Ali KARCI

2

1
Computer Engineering Department, Inonu University, 44280, Malatya Turkey

Othello2009@hotmail.com,
2
 Computer Engineering Department, Inonu University, 44280, Malatya Turkey

ali.karci@ inonu.edu.tr

Abstract

Abstract— Association rule hiding has been playing a very

important rule in Privacy Preserving Data Mining and has

been gaining the attention of many researchers. Many

algorithms are developed with authors claiming the

superiority of their algorithms. In this respect, we selectively

choose some state of the art approaches in the context of

association rule hiding heuristics and border-based

approaches and examine their results on Mushroom and

Retail datasets.

1. Introduction

Applications of data mining are increasing every day. However,

one of the side effects of data mining is privacy; the more we

want accurate data mining results, the more we need to breach

privacies of individuals and organizations. There are three

directions related privacy in this regard; namely data privacy,

knowledge privacy and owner privacy [1]. The first direction

concerns with raw data that may reveal confidential information

like medical records, criminal records, records related to

national or international security, etc. The second direction

concerns with results of data mining such as classification,

clustering and segmentation, sequence analysis, etc. Association

rule hiding comes under this category. The third direction deals

with sharing data between parties for mining purposes without

letting the other party know the content of these data. This

problem is commonly known as Secure Multiparty Computation

(SMC) [2].

 Our contribution here includes the following: First, we

present the most common heuristic approaches for solving ARH

problem along with the border-based approaches. Second, we

evaluate their behavior on Mushroom and Retail datasets.

Finally, a number of suggestions are provided to improve these

algorithms.

 The rest of this paper is organized as follows. In

section 2, we state out the problem and provide the necessary

background. In section 3, we present the heuristic and border-

based approaches. Experimental evaluation is shown in section

4. Section 5 concludes this work.

2. Problem Formulation

Let £ = {i1 ,i2 ,i3 ….im} be a set of items in a dataset D.

Any subset I ϵ T is called an itemset. An Itemset is called

frequent if its frequency in the dataset is greater than (or equal to

certain threshold value called support threshold. Association

rule is an implication of the form X→ Y where X is a frequent

itemset called rule antecedent and Y is a frequent itemset called

rule consequent and X and Y are disjoint i.e. X ∩Y = ∅ [3].

Association rule is called strong (or interesting) association rule

if its confidence is greater than a certain threshold value called

confidence threshold.

Support and confidence are mathematical measures and they

are calculated as follows:

Support, s (X→Y) = (σ(X∪Y))/(|D|) (1)

Confidence, c (X →Y) = (σ(X∪Y))/(σ(X)) (2)

where X is the rule antecedent , Y is the rule consequent,

σ(X U Y) is number of transactions in which both X and Y

occur , σ(X) number of transactions in which X occur, |D| is the

size of the database. These thresholds are usually defined by the

user or the database owner.

 Support and confidence have many interesting

applications and they can reveal patterns unknown even to the

database owner. However, these patterns could sometimes be

sensitive due to legal constraints or because of the competition

between companies [4]. Thus, association rule hiding concerns

with finding efficient algorithms able to hide sensitive patterns

with minimal impact on the database. Actually, Atallah et.al.

[5]proves that the optimal solution i.e. removing sensitive

patterns from frequent itemset list without affecting non-

sensitive ones , is NP-hard.

In general, Association rule hiding algorithms should achieve at

least one of the following goals under the same support and

confidence thresholds or higher [6]:

 No sensitive pattern determined by the database owner

is revealed after the application of ARH algorithm.

 Non-sensitive pattern that can be mined from the

original database should also be mined from the

sanitized database. Such original pattern that could not

be mined from the sanitized database is known as

missing pattern.

 No new pattern generates from the sanitized database.

Such patterns are known as false or ghost patterns.

 Database distortion is minimum.

In order to achieve these goals, association rule hiding

algorithms carefully select one transaction at a time, called

victim transaction, to modify and an item in this transaction,

called victim item, such that the deletion of this item reduces the

support of the sensitive pattern with as minimum impact on the

1173

non-sensitive patterns as possible. This process continues until

sensitive pattern support equals minimum support -1.

3. Sanitation Algorithms

In this section, we select some popular heuristic approaches that

have been suggested by their authors and compare them with

three border-based approaches. We emphasize here that the core

of each algorithm is the candidate selection process, which is to

effectively find the victim items with as less impact on the

original dataset as possible. We should also mention that the

border-based algorithms discussed here are not free from

heuristics.

3.1 Heuristic Approaches

As we will see, these approaches carefully select a set of

transactions and sanitize them in order to hide sensitive

knowledge. These algorithms are simple, fast, efficient, and

scalable. However, they do not guarantee the best solution and

usually suffer from the local optima problem [1].

3.1.1. Algorithm 2.b.

This algorithm was proposed by Verykios et.al [7], which is

considered the first to address the problem by reducing either

support or confidence of the sensitive pattern. Here, sensitive

itemsets are sorted by their size then support in a decreasing

order. Supporting transactions are sorted in an ascending order

of transaction size. The item in the sensitive itemset with the

highest support is the victim item. In the next step, starting with

the first sensitive itemset in order, we remove the victim item

from the first sensitive transaction in the list and propagate the

results. In propagation, we reduce the support of any other

sensitive pattern affected by this deletion and remove the

corresponding sensitive transaction from its supporting

transaction list. The process continues until the support of the

current itemset goes below support threshold.

3.1.2 Item Grouping Algorithm (IGA)

This approach is based on clustering the sensitive patterns we
need to hide into common patterns called restrictive group. Each
restrictive group has a label. The label is an item that belongs to
the restrictive group and has the smallest support among other
items in the group. Another term is the conflicting sensitive
transactions, which means transactions supporting more than
one sensitive pattern. These transactions have the priority to
modify according to the degree of conflict. Thus when removing
the label from the conflicting sensitive transactions, we take care
of more than one restrictive pattern at a time. Using this
approach, we achieve the purpose of the hiding goal and the
minimal impact on the database at the same time.

 However, when grouping restrictive patterns, there

can be an overlapping between groups because clustering is

done in a pair-wise basis and is not transitive. The way of

removing the overlapping is defined in [8]. Sensitive

transactions have a number associated with them used for

counting number of sensitive patterns the transaction supports.

This number is called the degree of conflict. Transactions are

sorted in a decreasing order according to degree of conflict.

Finally, for each sensitive pattern, remove the label of the

restrictive group that sensitive pattern belongs to from the first

sensitive transaction in order [8].

3.1.3. Hybrid Approach

The advantage of this algorithms is that it considers non-

sensitive itemsets during sanitizations. This approach is a

combination of two approaches. The first approach is called

Aggregate approach in which we find the sensitive transactions

and sort them according to supporting sensitive/non-sensitive

ratio. The transaction with the maximum ratio is selected as the

victim transaction. In the second step Disaggregate approach is

used to find the victim item within the transaction found in the

previous step using the same criteria i.e. item with maximum

sensitive/non-sensitive ratio[9]. This makes the Hybrid approach

require many calculations. Actually, the worst case

computational complexity of this algorithm is O()

[9]. In our implementation, we reduced the search space by first

taking the minimum set of the sensitive frequent itemsets and

then continuously updating the search space. This is done by

continuously deleting any transaction that turns to be non-

sensitive from the sensitive transaction list and any item that

does not support any sensitive itemset within the sensitive

transaction.

3.1.4. Sliding Window Algorithm (SWA)

In this algorithm, for each K transaction in the database (K is the

window size), we sort sensitive transactions ascendingly of

transaction size. Then for each sensitive transaction, we count

the frequency of each item that belongs to the sensitive pattern.

Items inside each transaction are then sorted in a descending

order of their frequencies. Item with the highest frequency is the

victim item [10]. Finally, we remove the victim item defined in

the previous step from the first transaction in order.

3.2. Border-based Approaches

This and the following algorithms are based in on the concept of

the border theory [11]. For convenience, we introduce this

concept here. For any set of itemsets U, an itemset X upper

border of U (also called positive border) (U), if 1) (U)

is an anti-chain collection of sets. 2) Y U such that Y X.

Similarly, an itemset X lower border of U (also called

negative border) (U), if 1) (U) is an anti-chain

collection of sets. 2) Y U such that Y X [12]. In other

words, the upper border is the maximum frequent itemsets from

which all frequent itemsets are generated and the lower border is

the minimum set of infrequent itemsets and the border is the

union between them. These two concepts are direct

consequences from the Apriori property since any frequent

itemset implies that all its subsets are also frequent and no

frequent superset could be generated from a non-frequent one.

Thus, these two concepts are very useful since they allow us to

track the impact of deleting victim items on the database during

the hiding process. In all these algorithms, we try move the

sensitive itemsets to be on the negative border side while

keeping other elements in the positive border intact. That is why

 and are usually used to denote maximum frequent

non-sensitive itemsets and minimum set of sensitive itemsets

respectively.

1174

3.2.1. Border-based algorithm(BBA)

The key idea of this algorithm is to keep track of the positive

border elements by assigning them weights showing their

vulnerability of being affected by item deletion. These weights

are continuously updated according to the current support of

their corresponding itemsets. The authors suggest the following

equation to track these weights:

W (I) =

where is an integer larger than number of revised positive

border itemsets, represents database during sanitization.

 In order to find the victim item, the algorithm

associates an interval, called impact interval, with each item

belonging to the sensitive itemset where the left boundary of the

interval represents the summation of the weights of the direct

positive border elements. An itemset X is called direct positive

border of sensitive itemset Y if X is a positive border element

and X Y. The right boundary is the summation of the weights

of all relevant positive border elements including the direct

positive ones. Upon finding the impact interval of each item on

the border elements, a partial order relation is used to find the

item with minimal impact on the border [12].

 In order to reduce the search space for finding the

victim transaction, the algorithm associates a vector map with

each supporting sensitive transaction. The length of this vector

equals to | | i.e. the positive border elements supported by

this transaction and will be affected when hiding sensitive

itemset X and choosing item i as victim item. Then the victim

transaction is the one with the least weight summation [12].

3.2.2. MaxMin1 Algorithm

This and the next algorithm are based on the max-min principle

used in decision theory to maximize the minimum profit. They

hide sensitive itemsets according to a set of theories devised by

the authors in [13, 14]. First, we find and and sort

elements in in increasing order of support and decreasing

order of length. Then, for each element X in , we find

. For each item, called tentative victim item, in X, we

construct a list called affinity list defining the possibly affected

positive border elements. From each list, we choose the itemsets

with the minimum support and from the result; we take the

elements with the maximum support. This final list is called

max-min list from which we randomly select an itemset and its

corresponding tentative victim item in the affinity list is the

victim item. Finally, we remove this item from the first

transaction supporting the sensitive itemset.

3.2.3. MaxMin2 Algorithm

This algorithm improves over the previous algorithm. It

distinguishes between three cases the first case scenario is when

the max-min itemsets belong to only one tentative victim

item j. Here we delete this item from transactions supporting the

current sensitive itemset but not supporting any of the itemsets

in the max-min list. Otherwise, it chooses a transaction at

random. The second case scenario is when the max-min itemsets

are all derived from different tentative victim items. In this case,

the algorithm iterates over each max-min itemset relevant to

each tentative victim item to find the transaction supporting

current sensitive itemset but not supporting any of the itemsets

in the max-min list relevant to that item. If there are any, it

removes the victim item from a transaction in the resultant list.

When all cases fail, the algorithm iterates over all possible pair

itemsets in the max-min list to find transactions affecting only

one list, if there are any, it removes the corresponding victim

item from one of them. Otherwise, it removes victim item from a

random selected transaction supporting the first list [14, 15].

4. Experimental Results

In this section, we present the software used to implement those
algorithms as well as the measurements and the datasets used for
evaluation.

4.1. Software Description

All the algorithms were coded in Visual Studio 2013 with C#.
For Frequent itemset generation, we used FPgrowth algorithm
implemented in java using SPMF library [17]. We also used
IKVM.openJDK.Core library [18] to link java codes in .Net
environment.

 We run the algorithms on an Intel(R) Core(TM) i5-
3230M CPU @ 2.60GHz (4 CPUs), ~2.6GHz with 8084MB
RAM available memory.

4.2. Description of the real datasets

For algorithms evaluation, we used two publically available
datasets, namely, Mushroom from UCI Machine Learning
Repository and Retail dataset from an anonymous Belgian retail
store. The two datasets can also be found here [13]. Description
of these datasets is shown in Table 1. Threshold values and
number of randomly selected itemsets to be sensitive are shown
in Table 2.

Table 1.Datasets descriptions

Dataset
Name

Transactions

Items

Average
Transaction
Length

Mushroom 8124 119 23.0

Retail 88162 16470 11.0

For algorithms BBA, MaxMin1 and MaxMin2, we compare our
implementation results with results in [14, 15] using a sample
dataset mentioned in [12, 16]. For this particular example, we
use the same notion used in [14, 15]. As suggested by the
authors, the notion m/n is used to measure the performance of
each algorithm where m indicates the number of raw database
changes and n indicates number of non-sensitive frequent
itemsets accidently hidden. The winning algorithm is underlined
[14, 15].

Because both MaxMin1 and MaxMin2 choose the victim item
and/or transactions at random in some cases, we run these
algorithms twice. By comparing results in table (3), we see that

1175

our implementation for both MaxMin1 and MaxMin2 are
approximately similar to the results in [14, 15]. However, our
implementation of BBA algorithm shows better results.

Table 2. Datasets and parameters used

Dataset

Name

Relative

Min

Support

(%)

Absolute

Support

Non

Singleton

Frequent

İtemsets

Sensitive

Itemsets(with

supersets)

Mushroom 25 2031 5510

5(208)

13(803)

25(1208)

50(1670)

100(2894)

150(3292)

200(3374)

300(3964)

Retail 0.14 123.43 3231

5(7)

13(15)

25(37)

50(83)

100(134)

150(360)

Table 3 Comparison between our results and results in [14, 15] for

evaluating Border-based, MaxMin1 and MaxMin2 algorithms (our

implementations are shown with background color).

Sensitive

Itemsets

BBA BBA

(our

imp)

Max

Min1

MaxMin1

(our imp)

Ma

xM

in2

MaxMin2

(our imp)

Ab 2/0 2/0 2/0 2/0 – 2/0 2/0 2/0 – 2/0

Ad 4/1 4/1 4/1 4/0 – 4/0 4/0 4/1 – 4/1

Cd 4/2 4/1 4/3 4/3 - 4/3 4/3 4/1 – 4/1

Abd 1/0 1/0 1/0 1/0 – 1/0 1/0 1/0 – 1/0

Cde 1/1 1/1 1 /2 1/3 – 1/2 1/1 1/1 – 1/1

ab, Acd 4/1 3/0 3/0 3/0 – 3/0 3/0 3/0 – 3/0

ac, abd 4/1 3/0 3/1 3/0 – 3/1 3/0 3/0 – 4/1

ad, bcd 5/1 5/0 5/1 5/1 – 5/1 5/0 5/1 – 5/1

bc, cde 2/1 2/1 2/1 2/1 – 3/3 2/1 3/1 – 3/1

ce, abd 2/0 2/1 2/1 2/1 – 2/1 2/0 2/1 – 2/0

ac, abd, cde 4/1 3/1 4/2 4/3 – 4/3 3/1 4/1 – 3/1

ab, de, acd 5/2 4/1 4/1 4/1 – 4/1 3/0 4/0 – 4/0

ac, ad, bcd 5/0 5/0 6/1 6/2 – 6/2 5/0 5/0 – 5/0

abd, acd, cde 4/2 3/1 3/2 3/2 – 3/2 3/2 3/2 – 3/2

abd, acd, bcd 4/0 4/0 3/0 3/0 – 3/2 3/0 4/0 – 4/0

ab, bc, cd, de 9/2 7/0 8/2 8/2 – 8/2 7/0 7/0 – 7/0

4.3. Effectiveness Measures

Here we evaluate the algorithms using two measurements
namely; Misses Costs and database difference size suggested by
authors in [8]. We should also mention that in all these

algorithms no hiding failures or artificial patterns found. We set
disclosure threshold at 0.0 in IGA and SWA. For SWA, we set
K (window size) at 100.

 Misses Cost (MC): measures the amount of legitimate
patterns accidently deleted due to sanitization. Misses cost is
calculated by:

MC =

where is the non-restrictive patterns mined from

database X.

 Difference between the original (D) and sanitized datasets
(), is measured as:

 Diff (D,) =

where n is the number of distinct items in the original dataset
and is the frequency of the Item in dataset X. This later

measurement is also known as item-wise accuracy, as opposed
to transaction-wise accuracy, which means number of
transactions that remain intact after sanitization [9].

5. Evaluation

To evaluate the algorithms, we choose two publically published
datasets with different characteristics in terms of number of
transactions, number of items and average transaction length as
shown in table (1). From the frequent itemsets generated in each
dataset, we randomly selected six sets and eight sets of non-
singleton frequent itemsets to be sensitive in Retail and
Mushroom respectively. The results of these selections are
shown in table (2). Thus for the sake of comparison, we used the
same selected sensitive itemsets in each algorithm. In case of
Sliding Window Algorithm, we set disclosure threshold value at
minimum support value to hide sensitive itemsets completely.
We also set K=|D|, i.e. size of the window equals size of the
dataset at hand.

Figure (1) effect of hiding sensitive patterns on Retail dataset
using Missing-Costs measurement.

1176

 Figure (2) effect of hiding sensitive patters on Retail dataset
using Dataset difference size measurement.

Figures (1, 2) show the effect of hiding selected itemsets on
Retail datasets. From the figures, we see that the algorithms
show approximately the same performance in terms of dataset
difference size. However, the missing costs are different. This is
because the items chosen for deletion are different with the
different algorithms. We also see that BBA, MaxMin2 and
Hybrid approaches show the best missing costs performance.

Figure (3) effect of hiding sensitive patterns on Mushroom
dataset using Missing-Costs measurement.

Using Mushroom dataset, we see in figure (3) that Hybrid and
BBA show the best missing costs performance while MaxMin1
and MaxMin2 performances degenerate with the increasing
number of sensitive itemsets.

Figure (4) effect of hiding sensitive patterns on Mushroom

dataset using DB-difference-size measurement.

In terms of dataset difference size, algorithm alg.2b and SWA

shows the best performance in this particular experiment. From

the figures, we see that the behavior of the algorithms turns to

be more stable in Mushroom and turns to increase in Retail

dataset. The reason is the nature of these datasets. Items are

more correlated in Mushroom than in Retail; choosing five

random different itemsets to be sensitive results in 7 and 208

sensitive itemsets in Retail and Mushroom respectively (see

table 2) as an example.

6. Conclusion

Hiding sensitive itemsets depends on the difference between the
support of the sensitive itemset and the minimum support; the
larger this difference, the more we need to modify the original
dataset. Many algorithms are developed to efficiently hide
sensitive itemsets with minimal impact on the original datasets.
In this paper, we discussed a number of heuristic and border-
based approaches to solve association rules hiding problem and
applied them on Mushroom and Retail datasets. Experimental
results show that BBA, Hybrid and MaxMin2 algorithms have
the best performance. Despite its simplicity, alg.2b algorithm
shows good performance. Hybrid Algorithm shows good
missing costs and database-difference size performances.
However, it is slow and requires many computations. This
algorithm could be improved dramatically by reducing the
search space since many irrelevant transactions and items are
examined. We can also reduce the number of sensitive itemsets
by hiding only the minimum set of sensitive itemsets according
to the Apriori principle as in BBA algorithm.

7.References

[1] C.C. Aggarwal, J.Han, Frequent Pattern Mining, Springer,

2014.
[2] C.Clifton,J.Vaidya. Privacy-Preserving Data Mining: Why,

How, and When, IEEE, 2004.
[3] R. Agrawal, T. Imielinski, and A. Swami. Mining

association rules between sets of items in large databases.
In Proc. of the ACM SIGMOD Conference on
Management of Data,1993

1177

[4] H.Q.Le, S.Arch-int,N.Arch-int,Association Rule Hiding
Based on Intersection Lattice, Hindawi Publishing
Corporation,Volume 2013, Article ID 210405,2013.

[5] M. Atallah, E. Bertino, A. Elmagarmid, M. Ibrahim, and V.
S. Verykios. Disclosure limitation of sensitive rules, 1999.

[6] A.G.Divanis,V.S.Verykios.,Association Rule Hiding for
Data Mining, vol 41,Springer,2010.

[7] E. Dasseni, V. S. Verykios, A. K. Elmagarmid, and E.
Bertino. Hiding Association Rules by Using Confidence
and Support. In Proc. of the 4th Information Hiding
Workshop, April 2001.

[8] S. Oliveira, O. Zaiane, Privacy preserving frequent itemset
mining, Proceedings of the IEEE ICDM Workshop on
Privacy, Security and Data Mining, December 2002.

[9] Amiri. Dare to share: Protecting sensitive knowledge with
data sanitization. Decision

[10] S. R. M. Oliveira and O. R. Zaiane. An Efficient One-Scan
Sanitization For Improving The Balance Between Privacy
And Knowledge Discovery, June 2003.

[11] H. Mannila and H. Toivonen. Levelwise search and borders
of theories in knowledge discovery. Data Mining and
Knowledge Discovery, 1(3):241–258, 1997.

[12] X. Sun and P. S. Yu. A border–based approach for hiding
sensitive frequent itemsets. In Proceedings of the 5th IEEE
International Conference on Data Mining (ICDM), pages
426– 433, 2005.

[13] http://fimi.ua.ac.be/
[14] G. V. Moustakides and V. S. Verykios. A max–min

approach for hiding frequent itemsets. In Workshops
Proceedings of the 6th IEEE International Conference on
Data Mining (ICDM), pages 502–506, 2006.

[15] G. V. Moustakides and V. S. Verykios. A maxmin
approach for hiding frequent itemsets. Data and Knowledge
Engineering, 65(1):75–89, 2008.

[16] X. Sun and P. S. Yu. Hiding sensitive frequent itemsets by
a border–based approach. Computing science and
engineering , 1 (1):74–94, 2007.

[17] http://www.philippe-fournier-
viger.com/spmf/http://www.ikvm.net/devguide/net2java.ht
ml

1178

