
 1

STUDENT TIME TABLE BY USING GRAPH COLORING ALGORITHM

Baki Koyuncu ,Mahmut Seçir
e-mail: bkoyuncu@ankara.edu.tr e-mail:cihansecir@gmail.com

Ankara University Computer Engineering Department, 06500, Beşevler, Ankara, Turkey

Keywords: Graph Coloring Algorithm, Student Time Table

ABSTRACT
Graph Colouring Algorithm was used to generate the
student weekly time table in a typical university
department. The problem was a Node-Point problem and it
could not be solved in the polynomial domain. Various
constraints in weekly scheduling such as lecturer demands,
course hours and laboratory allocations were confronted
and weekly time tables were generated for 1st, 2nd, 3rd
and 4th year students in a typical semester.

I. INTRODUCTION
Timetabling is the allocation, subject to constraints, of
given resources to objects in space-time domain to
satisfy a set of desirable objectives as nearly as possible.
Particularly, the university timetabling problem for
courses can be viewed as fixing in time and space a
sequence of meetings between instructors and students,
while simultaneously satisfying a number of various
essential conditions or constraints.

The model takes advantage of the structural properties of
conflict graph instances that arise from university
timetabling problems, and is based on the effectiveness
of a variety of graph coloring approaches. These are
intelligently-ordered and intelligently-searched sequ-
ential coloring methods, as well as integer and constraint
programming formulations of graph coloring in solving
such problems.

Planning timetables is one of the most complex and
error-prone applications. There are still serious problems
occurring and these problems are repeating frequently.
Therefore there is a great requirement for an application
distributing the courses evenly and without collisions.
Graph coloring algorithm is one of the most used
algorithms. [1]

II. TIMETABLING AND GRAPH COLORING
 In a typical semester, the courses are required to be
scheduled at different times in order to avoid conflict.
The problem of determining the minimum number (or a
reasonable number) of time slots needed to schedule all

the courses subject to restrictions is a graph coloring
problem.

Figure 1 illustrates a simple timetabling problem
instance in which we have five courses to be scheduled:
Physics, Calculus, Electronics, Microprocessors, and
Operating Systems.

Figure 1 : Colored graph G for 5 courses

In Table 1 below, an asterisk indicates those pairs of
courses that would cause a timetabling conflict if both
were scheduled at the same time.

 Table 1: Course distribution

The cause for potential conflict could be any of the
following example restrictions:

a) Courses Calculus and Electronics might be taught
by the same professor,
b) Courses Microprocessors and Operating Systems
might be taken by the same student.

 2

Given the list of courses Physics, Calculus, Electro- nics,
Microprocessors, and Operating Systems along with the
set of potential conflicts, we can create a conflict-free
timetable of courses by transforming the Table 1 to the
corresponding conflict graph G in Figure 1, and finding
a minimum coloring.

A vertex in G represents a course, an edge represents a
pair of courses that conflict, and a color represents the
period in which that particular course is to be scheduled.
We see that four periods are required to schedule all the
courses without conflict: (G) = 4. According to the
coloring, we can schedule courses Physics and
Operating Systems for Period 1, and courses Calculus,
Electronics, and Microprocessors for Periods 2, 3, and 4
respectively.

With course timetabling, it is often desirable that courses
do not “student-conflict” (i.e., those two courses sharing
a common student will not be scheduled at the same
time).

However, in most situations, a course timetabling
solution without some “student conflict” does not exist,
due to the fact that university courses are almost always
scheduled prior to when students choose their courses.
This simply means that a student, when planning his/her
semester of courses in which to enroll, may very well
have to choose between two or more initially desired
courses that are scheduled to take place at the same time,
to resolve this “student-conflict”.

Welsh and Powell [3] first showed the equivalence of
timetabling problems with graph coloring problems, but
were not able to solve such problems when preassigned
meetings are considered. Welsh and Powell also gave a
“largest degree first” coloring algorithm to accompany
their graph coloring/timetabling equivalence result.

Timetabling is the scheduling of a set of related events in
a minimal block of time such that no resource is required
simultaneously by more than one event. In university
timetabling, the resources involved may be required by
no more than one course at any particular time, are
instructors, classrooms, and students. As mentioned
earlier, timetabling (in particular, university timetabling)
is a practical application of graph coloring.

The minimum coloring problem and the timetabling
problem have been classified as NP-hard problems in the
general case. This means that it is unlikely that it will be
possible to find fast (i.e., polynomial-time) algorithms to
solve these problems. In order to find optimal solutions
to such NP-hard problems, it is usually necessary to
consider all possible solutions to choose the best one.

III. RESULTS
In this study in which graph coloring algorithm is
utilized, is designed in a user-friendly method. Ease of
use and speed of the application differentiates from
current approaches with these powerful features. Results
are obtained in a fast manner using the algorithm
mentioned. The application developed here can give
efficient results in a few seconds while table forming
process can take minutes or hours with similar
applications.

 It is a big problem in universities to create time tables
which do not victimize students and instructors.
Manually created programs can not deal with these
problems despite the great efforts required to form a
time table. The purpose of this study is to develop an
efficient solution to all these problems.

Application Program runs in five phases. These are data
entry, registration, constraint setting, generation of the
time table and displaying the time table.

In data entry phase, users enter the student data, Figure
2, and course data, Figure 3, into the database. A
crucial point in course data is the instructor constraint.
An instructor may offer more than one course and these
courses must not collide in the generated time table.

Student course requirements per semester are entered in
the registration phase Figure 4. Time table will be
generated according to this student data. Student
constraints are introduced to provide a collision free
planning in this phase.

In constraint phase, Figure 5, appropriate time slots in a
weekly time table are set for any course or instructor.
There is flexibility in defining time slots. It should be
kept in mind that some instructors may require certain
days off for other activities. Therefore instructor
constraints must be set for those days of the week in the
application program.

In the registration phase, some students are forced to
take some courses which they failed in previous
semesters before they take new courses. Registration is
not performed if failed courses are not selected. The
application program does not allow the students to take
the future semester courses. It checks for the total credits
taken by a student in a semester and it does not permit
the student to exceed this value in registration. Higher
priority is given to the courses failed by the student.
Registration is not performed otherwise.

Time table for the four years are obtained in table form
in display phase Figure 6. The application program

 3

exports the generated time table in spreadsheet (.xls) file
format. In this way, users can get the print out of the
tables.

Finally a Visual menu driven application program is
generated by using C++ platform [2]. This program
performed the operations according to the records
entered into the database. Used algorithm gives fast
results in runtime but time table reliability decreases
when too many constraints are introduced. The time
table can not reach the final state when the constraint
number exceeds the optimal value. For example,
application program may fail to produce a result when
two courses taken by a student are fixed to a timeslot.
Collision occurs in such a condition since the application
program tries to assign the same time slot for two
colliding courses. These kinds of contradictions must be
detected and avoided by the user.

The application program also differentiates from current
approaches with the spreadsheet (.xls) file export
feature. Users can print the program output and desired
visual arrangement may be done before printing.

The most important phase in the study is the generation
of the time table. Operations performed in this phase
may be ordered as follows:

a) Setting the constraints in the course matrix,
b) Detection of the colliding courses,
c) Color assignment to the colliding courses using

graph coloring algorithm
d) Placing the courses to the table according to the

colors assigned.

Marking the constraints on the course matrix is done
according to the student and instructor constraints and in
this way colliding courses are detected.

IV. CONCLUSION
 The Study has presented a successful approach of
automating timetable generation by applying a new
technique like graph coloring. Example weekly time
tables for 1st, 2nd, 3rd and 4th year students in a typical
semester in Computer Engineering department were
given in Figure 6. The data entrance for the program by
the operator was also given as an example for the reader
in tabular form in Figure 3.

The introduction of this technique together with the
known consistency preserver operators not only make
convenient and efficient timetables but also decrease the
computational time for this NP-hard problem. The only
time is spent is entering the course information. Once all
the data is entered it takes only a few seconds to display
the output programs .In this study, the relevance of
university timetabling problems was investigated as a
natural and practical application of graph coloring. As a
result, a software application was developed to solve the
course collisions which were one of the biggest
problems. In addition the application program was
simple and functional to use.

REFERENCES
1. Andrea Schaerf. A survey of automated

timetabling.Technical Report CS-R9567, CWI -
Centrum voor Wiskunde en Informatica, 1995.

 2. Borland Co, “C++ Builder 6.0 Enterprise Suite
Version 6”, Borland Corporation,1983-2000,we
page source:http:/www.borland.com

 3. WELSH D.J.A. and POWELL M.B. (1967) An
Upper Bound for the Chromatic Number of a
Graph and Its Application to Timetabling Problems
Comp.Jrnl."10, 85-86.

 4

Figure 2 : Student Data
Entrance

Figure 3 : Course Data
Entrance

Figure 4: Course
Registration Entrance

 5

Figure 5 : Constraint Set

Figure 6 : Resultant
Timetable

