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ABSTRACT 
This paper proposes a new formulation for the tuning of 
proportional-integral (PI) controllers. The method is based 
on the pole placement method applied for first order plus 
time delay (FOPTD) processes using Padé approximation. 
An important property of the proposed tuning formulation 
is that it results in a fast response with no overshoot for a 
wide range of systems. A tuning parameter is also provided 
to fine-tune a given system. The results are compared with 
several well-known PI tuning formulas using theoretical 
approximations, simulations as well as real experiments.  
 

I. INTRODUCTION 
Most of the industrial systems are controlled by 
derivatives of PID controllers [1]. When there is a time 
delay or large amount of noise in the process, the 
derivative term of PID controllers are usually set to zero 
yielding PI controllers. It is important for practicing 
engineers to be able to quickly determine “good” 
coefficients for PI controllers after identifying some key 
parameters of the system with simple experiments. It is a 
common practice to approximate a given process to a first 
order plus time delay (FOPTD) system and then calculate 
the controller coefficients accordingly. 
 
There are many well-known formulas derived to tune PI 
controllers among which the following can be counted: 
Ziegler-Nichols [2], Cohen-Coon [3], IMC-PI [4], 
optimum integral absolute error (IAE) [5]-[6], optimum 
integral time-weighted absolute error (ITAE) [5], 
optimum integral squared error (ISE) [5], and optimum 
integral time-weighted squared error (ITSE) [7]. Most of 
these methods are derived based on time domain 
performance. Ziegler-Nichols design method is a classical 
method to find a good starting point for PI controller 
tuning. There are two methods proposed by Ziegler and 
Nichols: one is based on the measurement of the critical 
gain and critical frequency of the plant and the other is 
using the step response of the open-loop system. We will 

be using the second method in this paper. Cohen-Coon 
method is a dominant pole design method. The key 
feature of this tuning method is that integrated error is 
minimized. Thus, this method gives good load disturbance 
rejection. IMC-PI tuning method is based on the idea of 
cancelling the pole of the process using the zero 
introduced by the PI controller and then tuning the closed-
loop system response using a free parameter, clτ  (see 
Table 1). The idea behind the other tuning methods is to 
choose PI controller parameters to minimize an integral 
cost functional. For the so called setpoint formulations the 
cost functions are used as 
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input and )(ty  is the output of the system. It is also 
possible to use the disturbance signal instead of the 
reference input in above cost functions to obtain the so 
called “load disturbance” tuning formulas. This paper 
proposes a new tuning formula that utilizes Padé 
approximation and the idea of dominant pole assignment. 
 
The paper is organized as follows. Section 2 and 3 are 
devoted to system representation and the derivation of the 
tuning formulas. Section 4 presents simulation results on 
two example systems and demonstrates the advantages of 
the proposed method. Some experimental results carried 
out on PT326 experiment set are given in Section 5. 
Finally, Section 6 contains conclusive comments and 
suggestions for future research. 
 

II. REPRESENTATION OF THE FOPDT 
PROCESSES USING PADE APPROXIMATION 

 
Consider the feedback control system shown in Figure 1. 
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Figure 1:  The FOPDT system with PI controller 
 
A first-order process with a time delay can be described 
by the following transfer function 
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where L represents the time delay and )(0 sG  is the delay-
free system defined as follows: 
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where K is the steady-state gain and τ  is the time 
constant. )(sF  in Figure 1 is a PI controller to control the 
first order plus time delay system )(sG  described by (1).  
The PI controller is given as 
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where PK ∈  and iK ∈  represent the proportional 

and integral gains, respectively. iT  is the integral time 
constant. Padé approximation of the first order plus time 
delay system given by (1) is defined as follows: 
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where ( )PdG s is a rational transfer function (Padé) 

approximation for the term sLe− , and is given by  
                                       

           0

0

( 1) ( )
( )

( )

n
k k

k
sL k

Pd n
k

k
k

h sL
e G s

h sL

− =

=

−

≅
∑

∑
                   (5) 

 
where 
 

                       (2 )! !
2 ! !( )!k

n k nh
n k n k

−
=

−
                             (6) 

 
and n represents the order of the approximation. For 
example, the first and the second order Padé 
approximations are given by 
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It should be noted that the higher the order of 
approximation the better the representation of ( )PdG s  the 

time delay term sLe− . It is known, however, that a first or 
a second order approximation is enough in most of 
practical applications. In this paper, a second order Padé 
approximation is used to get a higher accuracy in the 
resulting formulations.  
 
Using (4) and the PI controller )(sF  described in (3), the 
(approximate) closed-loop transfer function of the unity 
feedback system in Figure 1 can be written as 
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which can be rewritten as 
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Hence, the (approximate) closed-loop system 
characteristic polynomial becomes 
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III. PI CONTROLLER TUNING BASED ON POLE 

ASSIGNMENT 
Equation (10) reveals the fact that the parameters of the 
controller gets into the coefficients of the closed-loop 
system characteristic polynomial linearly. Actually, it is 
possible to rewrite (10) as 
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Using a second order Padé approximation ˆ ( )D s  and 
ˆ ( )N s  can be given as 
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Rearranging (11)-(13) to get a monic characteristic 
polynomial, we have 

    

[ ( )

( )
( ) ]

4
2

2 2

3 2 2

1ˆ ( ) 12 12 12 6

6 6 12

6

c i p i

p i

p

P s s KK s KK KK L
L

s L KK L KK L

s L KK L L

τ

τ

τ

= + + + − +

− + + +

+ +

       (14) 

)(0 sG  sLe−
 F(s) 



We remark that the degree of the closed-loop system 
characteristic polynomial is 4. It is possible to show that 2 
poles (say 1p  and 2p ) of the characteristic polynomial 
described by (11) can almost always be arbitrarily 
assigned using the free parameters pK  and iK  [8]. Let 
the polynomial that correspond to the assigned poles be 
given as 
       2 2
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Here, ξ  and nω  are known as the damping ratio and 
natural frequency, respectively. Under the assumption that 
the remaining two closed-loop system poles are far left of 
the assigned poles on the complex-plane, it is possible to 
discuss that the time domain behavior of the closed-loop 
system is determined by the damping ratio and the natural 
frequency defined by (15).  In many practical situations, 
no overshoot is allowed, while a fast response is desired. 
Therefore, choosing the damping ratio 1ξ =  makes sense 
for many practical systems. On the other hand, the closed-
loop system cannot be arbitrarily fast in comparison to the 
open-loop system due to physical constraints. Usually, 
selecting the settling time of the closed-loop system in the 
order of that of open-loop system is sensible. Considering 
the fact that settling time is inversely proportional to nξω  
for the closed-loop system and it is proportional to τ  for 
the open-loop system, it is possible to choose the natural 
frequency  nω  as 
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where a +∈  is a free parameter to fine-tune the speed of 
the closed-loop system response. In many practical cases 
a can be chosen between 0.5 and 4. It is then possible to 
express the closed-loop characteristic polynomial as 
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and )(sPe  is the ‘residue polynomial’ formed by the rest 
of the closed-loop characteristic polynomials poles, which 
can be written as          
                 2
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 Thus, the right side of (16) is  
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Equating the coefficients of the same powers of s in (14) 
and (20) pK , iK , 0c  and 1c can be found as 
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where  
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Note that equations (21) and (22) define a tuning formula 
for the controller parameters. Although these equations 
seem to be complex, it is straightforward to calculate 
controller gains once the system parameters (L, K and τ ) 
are determined and the free parameter a  is chosen. It 
should be noted that for stability we require that 0a >  
and ( )ep s  is Hurwitz. Since ( )ep s  is a second order 
polynomial, it is Hurwitz, if, and only if, its coefficients 
( 0c  and 1c ) are positive. Furthermore, for the dominant 
pole assignment approach adopted above to be 
meaningful a necessary condition is that the roots of the 
residue polynomial ( )ep s  to be on the left of the 
dominant poles ( 1 2 /p p a τ= = − ). For this aim, the 
polynomial given below required to be Hurwitz. 
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Therefore when choosing the value of a  checking the 
following conditions is a good practice 
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where 0c  and 1c  are as defined in (23) and (24). 
 

Table 1: Some well-known PI tuning formulas 
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IV. SIMULATION RESULTS 

In this section, the proposed pole assignment tuning 
method (PA) is compared with several well-known PI 
tuning formulas (see Table 1) on two example systems 
using computer simulations.  
 
Example 4.1. Consider a FOPTD process as defined in 
(1) and (2) with 1τ = , 1L =  and 1K = .  The free (fine-
tuning) parameter for the proposed method (PA) is chosen 
to be 0.85a =  and that of IMC-PI method is chosen to be 

0.06clτ =  to get near optimal results. The simulation 
results are summarized in Table 2. As can be seen from 
this table, all formulations except PA and ZN result in a 
considerable overshoot. Although delay and rise time is 
long for the proposed PA method the settling time is very 
satisfactory (coming only after IAE and ITAE methods). 
Step responses obtained using a Simulink model can be 
seen in Figure 2.    

 

Table 2: The time-domain specifications obtained for Example 4.1 
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Figure 2:  Unit-step responses of PI tuning methods for Example 4.1 

 
Example 4.2. Consider a FOPTD process as defined in 
(1) and (2) with 0.1τ = , 0.5L =  and 1K = . Free parameter 
a  is chosen as 0.3 to obtain a fast response. The 
simulation results are summarized in Table 3. It should be 
noted that since the methods CC, IMC, IAESPC, ITSE, 
and ITSESPC yield unstable closed-loop systems they are 
not included in Table 3. Simulink simulations for the step 
responses are given in Figure 3.    

 
Table 3: The time-domain specifications 
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As can be observed from Table 3, the proposed method 
(PA) gives probably the most acceptable results especially 
when no overshoot is wanted in the output. 
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           Figure 3:  Unit-step responses for example 4.2 
 

V. EXPERIMENT RESULTS 
The proposed tuning formula is also tested on PT326 
process training set that is available in Control Laboratory 
of ITU. In this process, air in the surrounding atmosphere 
is drawn through a changeable inlet by an axial fan, 
driven through an electrical heater coil, passes through a 
plastic tube and then it is let out to the atmosphere. The 
control problem in this process is to control the 
temperature of the air going out of the tube.  By changing 
the electrical power supplied to the heater grid, the 
temperature is controlled. There are three positions along 
the plastic tube, where a thermistor can be placed to 
measure the temperature of the air. This distance between 
the thermistor and the heater grid introduces a transport 
delay into the system. Therefore, it is possible to model 
this dryer system as a FOPTD system. After a few simple 
tests, the transfer function of the experiment set is 
determined as 
 

                        )162.0/(875.0)( 43.0 += − sesG s  
 

Step responses obtained for different values of the free 
parameter a , and those obtained using different tuning 
methods are given in Figure 4 and Figure 5, respectively. 
Figure 4 reveals that a=1.3 is a good choice for this plant. 
By comparing the results given in Figure 5, it is possible 
to state that the tuning method proposed works very well 
by producing a step response with no overshoot and a 
very good settling time (the best together with ITAESPC 
and IMC) in comparison to the other methods. 
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Figure 4:  Step responses obtained for different values of parameter a in 

PT326 experiment set. 
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   Figure 5:  Step responses obtained for different tuning methods in 

PT326 experiment set. ( 1.3a =  and 0.3clτ = ) 
 

VI. CONCLUSION 
A new PI tuning method is proposed and compared with 
other well-known methods. An important advantage of the 
proposed method is the closed-loop system time response 
has usually no overshoot, while a very good settling time 
is obtained. Simulation and experiment results 
demonstrate this advantage of the method clearly. Rise 
time and delay time characteristics for the proposed 
method are usually slow in comparison to other methods. 
However, this is expected since overshoot is avoided. 
Future research will focus on tuning PID and PD 
controller parameters using similar approaches. 
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