
WIDEBAND SOURCES LOCALIZATION WITH EXPECTATION 
MAXIMIZATION ALGORITHM 

 
   Serap Çekli        Hakan Ali Çırpan 

e-mail: serapc@istanbul.edu.tr          e-mail: hcirpan@istanbul.edu.tr 
Istanbul University, Faculty of Engineering, Department of Electrical & Electronics Engineering, 34850, Avcılar, 

Istanbul, Turkey 
 

Key words: Wideband, source localization, expectation/maximization 
 

ABSTRACT 
In this study, the maximum likelihood (ML) estimator is 
proposed for the wideband sources in the near-field of an 
antenna array. The ML solution is achieved in the frequency 
domain since the source signal is wideband. The 
corresponding ML solution can not be maintained in the 
time domain due to the main characteristics of the wideband 
source signals. The expectation maximization (EM) 
algorithm is therefore suggested for the estimation of the 
location parameters since there is not closed form solutions 
for the corresponding maximum likelihood function. 
Moreover, the computer simulation results of the suggested 
algorithm are illustrated to present the performance of the 
algorithm. 
 

I. INTRODUCTION 
Finding the location of a radiating source by means of a 
sensor array is a very important task for many 
applications. Several suboptimal or some special 
constraint estimation methods have developed to be the 
solution for this problem [1]. 
 
In some applications, emitted signals from a source to the 
sensors are wideband, and especially the algorithms 
improved for the narrowband signals should be adapted 
for the wideband signals due to the bandwidth increase of 
these signals [2, 3, 4].  
 
The phase delay changes with respect to the frequency 
components of the wideband source signals, and the time 
delays can not be represented by simple phase delays just 
as the narrowband approximation. Therefore, a different 
approach is developed for the location estimation of the 
wideband source. The source signal is represented in the 
frequency domain by taking Fourier coefficients. The 
wideband source signal is composed into sub frequency 
bands by the Fourier transform. It is possible to find that 
the location of the source by taking into consideration of 
the independent identical distributed (i.i.d.) Gaussian 
noise assumption. Hence, the wideband source signal is 
processed in the frequency domain for an appropriate 
solution. 

Maximum likelihood (ML) method is an effective tool to 
solve such problems. Especially, ML estimations are the 
high resolution methods for the direction of arrival (DOA) 
estimations of the source signals and also source location 
estimation. ML method yields asymptotically unbiased 
estimations and obtain variance values close to Cramer-
Rao Bound even in the presence of a few number of 
sensors [5]. On the other hand, ML estimators are 
complicated reasonably although they provide superior 
performance. 
 
Expectation Maximization (EM) algorithm which is an 
efficient numerical calculation technique can be used for 
the effective use of ML method in the source localization 
problem and also reducing the calculation complexity. 
 
In this paper, the EM based ML estimator is proposed for 
the estimation of location of a stable source which 
propagates wideband signal. The massy calculations are 
simplified by using the EM algorithm in frequency 
domain. 
 

II. WIDEBAND SIGNAL MODEL 
The solution for the problem we concern is implemented 
by virtue of ML estimation procedure which is implied by 
using EM algorithm for the modelled wideband source 
signals in the frequency domain. The wideband source 
signal is represented in frequency domain via Fourier 
transform then under the i.i.d. Gaussian noise assumption 
the source location estimation can be performed by using 
this constructed model. The proposed ML solution for the 
wideband signals with real value is a composition of the 
signals related to each frequency bin due to the wideband 
characteristics of the source signal. 
 
The sensors are assumed to be identical and 
omnidirectional, and also the sensors are distributed in 
space, randomly.  The signal power which is received by 
each sensor differs from each other.  
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0,..., 1t L= − , 0,..., 1p P= −  ,  0,..., 1m M= −  

M denotes the source number, P denotes the sensor 
number, and ms , mt , pw , mr , pr denotes the source signal, 
the time delay between the m th source and the p th 
sensor, zero mean independent identical distributed  with 
variance 2σ  Gaussian noise, the m th source location, the 
p th sensor location, respectively. The distance between 

the m th source location and the p th sensor location is 
defined as follows, mp m pr r r= −

r r r . From this formulation 
the time delay between the m th source and the p th sensor 
is given in the following form,  
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sV is the propagation velocity per sample in the Eq. (2). 

Here, 1 ( )mp mp mpr t tα = −
r  represent the signal gains 

(attenuation coefficient). 
mpα is supposed to be constant for each data block. The 

location vectors of a sensor and a source are illustrated in 
the figure 1.  
 
 
 
 
 
 
 
 
 
 
Figure 1. The location vectors of the m th source and 
the p th sensor at the space ( m m x m yr x e y e= ⋅ + ⋅

r r r ) 
 
 
The derived equalities are substituted in the Eq. (1) and 
the following equation is obtained, 
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Hence, the signals which are received by the each sensor 
for data blocks with L sample point transformed into the 

frequency domain by using N  point DFT transform and 
the Eq. (4) is obtained. 
P  number of sensors and M number of sources are 
placed at an array. It is assumed to be P M> and the 
signal, which the p th sensor is received from the m th 
source at the time instant, t is modelled as given in the 
Eq. (1), 
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, 0,..., 1k K= −  . 
 
If we write the frequency domain signal model of the 
signal received by the sensor array, 
 

( ) ( ) ( ) ( )X k D k S k W k= + ,   0,..., 1k K= −                (5)  
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frequency spectrum information which is corresponding 
to each source of the array in general case. 

(1) (2) ( )

( ) ( ) ( ) .... ( )
TM
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  denotes the array 

steering matrix related to each source. The steering 
vectors, which are the components of the steering matrix, 
are expressed in the following form,   
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The frequency spectrum of the source is given below, 
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The frequency domain components of the model are 
written in the matrix-vector notation then the equation 
takes the form given in Eq. (8), and the corresponding 
equation is shown on the next page. Each component of 
the noise spectrum vector is zero mean, complex white 
Gaussian distributed and with variance 2Lσ . The noise 
converges to Gaussian distribution according to the 
central limit theorem in the frequency domain. / 2N  
points are adequate in the solution due to the frequency 
spectrum of the signal is symmetrical. 
 
III. MAXIMUM LIKELIHOOD ESTIMATION AND 

THE SOLUTION WITH EXPECTATION 
MAXIMIZATION ALGORITHM  

Basically, the maximum likelihood solution maximizes 
the likelihood function for a given observation sequence 
for the parameters to be estimated. Detection of the source 
location based on the observations ( )x t  will be 
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implemented via solving the ML estimator in the 
frequency domain with EM algorithm. If it is possible to 
observe the effect of each source independently, then in 
this case the signal at the output of the sensors is named as 
complete data. The incomplete data (observations) is 
obtained from the complete data (hypothetical data) space 
by many to one mapping. EM algorithm implements the 
complete data and parameter estimations at each iteration 
step for update process. Iterations of the algorithm repeat 
between logarithmic likelihood estimation of complete 
data (Expectation step) and maximization of estimated 
logarithmic likelihood function (Maximization step). 
Estimated logarithmic likelihood function is used for the 
estimation of the next step parameter. The likelihood of 
the parameters which are estimated with EM algorithm is 
increased at each iteration step such that the likelihood of 
the estimated parameters converge a stable point of the 
observed logarithmic likelihood function [6, 7].  
Briefly, EM algorithm maximizes the logarithmic 
likelihood function of the complete data, recursively. The 
observation sequence ( )x t  (incomplete data) is complex 
normally distributed and the corresponding logarithmic 
likelihood function is,   
 

[log ( ( ); ) log logf x t N Nυ π ν= − +  

]1 ( ( ) ( ( )) ( )) ( ( ) ( ( )) ( ))Ht t s t t t s t
ν
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The steering matrix D is the same for all frequency 
bins k for the narrowband approximation, provided that 

(k)D  changes for each frequency bin value k in the 
wideband case. The complete data concept represents that 
the signal which could be observed at the sensor outputs 
only if it would possible to define the effect of m th 
source. 
 
Many to one mapping procedure is carried out for the 
complete data space to the incomplete data space for each 
source. In general form, the expression related to 
complete data is, 
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where q and Q  represents the DFT frame number and 
the number of DFT frame, respectively. The logarithmic 
likelihood function corresponding to the complete data is  

 
 
written in the frequency domain then it takes the 
following form, 
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The observed signal is decomposed into the M number of 
components by using the Eq. (10) which represents the 
complete data. ( )mY q should be known as well as the 
observed data in order to find the coordinates of the 
source location. The expectation and the maximization 
steps of the employed EM algorithm are summarized as 
follows, 
Expectation Step: The logarithmic likelihood function of 
the complete data based on the observations should be 
calculated by using the previous iteration step and 
represented by the equation (12) given as below, 
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Maximization Step: In the maximization step to find the 
parameters { , }i i

msou msoux y  the Eq. (13) should be 
maximized the likelihood function which is estimated 
with respect to the parameters to be found. In other words, 
the parameter values which maximized the estimated 
likelihood function should be find, so that parameter 
values i

msoux and i
msouy are calculated. In general the 

conditional likelihood, 
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The likelihood function of the complete data is maximized 
with respect to the parameters to be estimated 
{ , }i i

msou msoux y by substituting ( )ki+1
mY (the conditional 

expectation) into the Eq. (13). The covariance matrix is 
defined by the Eq. (15) at the i th step of the algorithm. 
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To find the parameters that we are concern with, the Eq. 
(16) should be maximized. 
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The parameter values ( , )msou msoux y which maximize the 
Eq. (16) are the parameter values to be inquired. 
 

IV. SIMULATION MODEL 
The scenario is constructed for the wideband signals 
which are received from a stable source and randomly 
distributed eight antennas in the simulation model. The 
EM algorithm based ML solution is maintained for the 
wideband signal received from the source depending on 
the model, which is constituted in the frequency domain, 
in this scenario. It is assumed that the source emits the 
signal all directions equally and the initial point of source 
(5, 8) meters was given with a definite error as (3.75, 6) 
m. The positions of the sensors and the source are in the 
space represented in figure 1. The signals emitted by the 
source are received by the each sensor with the definite 
delay time related to the position of the sensors. While 
realizing the solution in the frequency domain the k  
parameter, which represents each frequency bin in DFT 

term 
max

2 kj t
Ne
π

−
, is calculated according to the maximum 

time delay which is corresponding to the distance between 
the sensors and the source by using the following 

expression 
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s
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The estimation errors may increase for the frequency bins 
after the k  value or the convergence of the algorithm may 
not occur. The k  value should be taken into consideration 
at the computation. The maximization procedure is 
maintained for the each discrete frequency bin value k , 
individually, at the optimization routine. The 2048N =  
point DFT is calculated for the signals received by each 
sensor. The sampling frequency and the DFT window 
length are chosen as 1000sf =  and 4Q = , respectively. 

200K = numbers of independent trials are carried out, and 
as the result of these free trials the RMSEs (Root Mean 
Square Error) are computed for the x  and y coordinates 
of the source at each k  value. The RMSE values are 
given in the figure 2. The expression of the RMSE is 
given as follows, 
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When the simulation model is maintained for a different 
scenario, the positions of the sensors and the source and 
the RMSEs are given in figure 3 and figure 4, 
sequentially.  
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Figure 1. The location of the source and the sensors in 
space. 
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Figure 2. The error for the coordinates of the source at 
each frequency bin (logarithmic graphic). 
 
 

V. CONCLUSION 
In this study ML estimator, whose solution realized in 
frequency domain with EM algorithm was proposed. The 
solutions which are maintained in frequency domain 
converge to the real parameter values. In the calculation 
period it is important to work with a probable maximum 
frequency bin value k , and this k  parameter is dependent 
on the distance between sensors and source. 
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Figure 3. The location of the source and the sensors in 
space. 
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Figure 4. The error for the coordinates of the source at 
each frequency bin (logarithmic graphic). 
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