
 

Abstract — This paper shows the error currently being 
committed when Mean Square Error is used as the optimizing 
criterion in training neural networks or fuzzy inference systems. 
The illustrative case is wind park power output prediction, based 
on wind speed and direction. It presents the application of 
Renyi’s Entropy combined with Parzen windows as a measure of 
information content of the error distribution in model parameter 
estimation in supervised learning. It shows that in the prediction 
of power generated in a wind park, made by Takagi-Sugeno 
Fuzzy Inference Systems, whose parameters are discovered with 
an EPSO – Evolutionary Particle Swarm Optimization 
algorithm, an entropy criterion leads to narrower error 
distribution functions than MSE. 
 

Index Terms—Information theoretic learning, entropy, fuzzy 
inference systems, wind power generation. 

I.  OBJECTIVE 
his paper discusses the advantage of generating a 
prediction for wind power generation for a wind park 
based on wind speed and direction information using, as 

training criterion, not the usual MSE – Mean Square Error, 
but a measure of Information Entropy. 

The prediction of power output from a wind park is highly 
important presently in Europe, where the growing penetration 
of wind generation will reach heavy percentages (in the range 
of 5 to 20%) in some countries in the coming years, like 
Germany, Spain, Denmark or Portugal, because of the 
collective effort in the European Union in complying with the 
Kyoto protocol. For instance, in Portugal by 2010 some 5100 
MW of wind generators will be installed, relating to a country 
peak power consumption in 2006 of about 8500 MW. So, we 
are no longer talking of marginal effects. 

The prediction of the available wind power influences the 
market clearing price, because wind power must be placed as 
an offer at zero price before the matching of offer and 
demand. Errors in wind prediction will distort market prices 
and, therefore, accurate and unbiased predictions are of the 
utmost importance. Also, a TSO (Transmission System 
Operator) will need the best wind power prediction possible to 
economically plan the operation of the network, namely for 
the definition of contracts correcting the power balance. 
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The basic data for short term wind power prediction (up to 
six hours) are wind speed and wind direction. It isn’t feasible 
neither to collect on line data at the place of each turbine 
(some 4000 turbines will be soon operating in Portugal) nor to 
model local effects representing individually each turbine and 
its installation condition and terrain effects. Presently, data are 
collected at a measuring station in the neighborhood of the 
park – but some older parks don’t even have a reliable data 
collecting station and wind data must be predicted by other 
methods that may take in account meso-scale effects or 
meteorological data. From these data one must predict the 
actual wind power production from the aggregate of tens or 
hundreds of generators geographically spread in a region. This 
task is further complicated by a number of factors such as: 

a) Wind speed may vary from generator to generator – 
and wind direction too, in a certain extent 

b)  Tail or shadow effects that reduce the energy of the 
wind behind a turbine become more or less important 
depending on the layout of the park and on the 
direction of wind.  

c) A complex terrain produces unexpected effects. 
d) The non-linear characteristic of the curve of power vs. 

wind speed of generators adds further complexity to 
the problem. 

The prediction of power output from a wind park is a 
necessary phase in methods of wind forecasting that rely on a 
wind forecast as an intermediate step.  

Prediktor[1], for instance, derives from a model of fluid 
dynamics equations, and converts it to wind as seen by a wind 
park, but then derives power from theoretical power curves, 
which is a weak step. Also eWind[2] forecasts first wind speed 
and only then wind power. 

This two-step approach may be found also in pure 
statistical methods [3] and in methods based on computational 
intelligence techniques [4]. When the terrain is complex, 
sophisticated models such as VENTOS [5] are used to describe 
air flows, especially in the wind park planning phase, but not 
so much in the operation of the power system. 

 Some methods convert wind predictions into wind power 
predictions by using an empirical power curve that tries to 
represent the non-linear behavior of wind generators. Lange 
[6], for instance, derived a model for uncertainties in power 
prediction by relating the standard deviation of their errors 
with the standard deviation of errors in wind predictions and 
the local slope of such power curve. However, the input-
output relation between wind and power is much more 
complex than represented by a single non-linear function, 
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which introduces unnecessary noise. We believe that mapping 
methods such as neural networks or fuzzy inference systems 
are better suited to emulate such relation. 

This paper follows this line of reasoning. It is about 
training a mapper for emulating the input-output transfer 
function relating wind speed/direction to power output of a 
wind park. But it is most of all about training better mappers, 
leading to more accurate output results: leading to a narrower 
probability distribution function of the prediction errors. 

The most widely cost function used in mapper training is 
the MSE – Mean Square Error. It is embedded in most 
backpropagation software applications to train neural 
networks or fuzzy inference systems. Its use has become so 
automatic that most researchers, namely in the Power Systems 
community, take it for granted. 

The use of MSE has the implicit assumption that errors are 
Gaussian distributed. This is because Gaussian distributions 
are the only ones that have all information contained in their 
first two moments (mean and variance), and minimizing the 
square error is the same as minimizing variance.  However, 
this assumption does not hold in many problems. Errors in 
wind park power output predictions are sometimes far from 
being Gaussian. Even if wind predictions are produced with 
Gaussian errors, the non-linearity of the characteristic curve of 
wind turbines causes power predictions to display non-
Gaussian characteristics. This has been shown, for instance, in 
[7], for 20 sites in Germany over a period of 3 years. 
Typically, error distributions from wind power prediction 
models are right skewed and have positive excess of kurtosis, 
meaning that: they are asymmetrical, they present a higher 
frequency of errors to the left of the mean and are flatter than 
the Gaussian distribution. 

When we apply a MSE criterion to train a mapper, we pass 
to its parameters just a fraction of the information contained in 
the input set and leave useful information in the error 
distribution, residing in its higher moments which are not used 
in the optimization. This is the basic flaw incurred in by all 
those that adopt MSE to train a mapper. 

To avoid this problem and use all information possible in 
data, leaving the error distribution with as little information as 
possible, on has to use an optimization criterion that takes in 
account all moments of output distribution – such as an 
Entropy criterion. This paper is devoted to showing that 
Information Theoretical Learning (ITL) concepts, which base 
learning on Renyi’s Entropy measure, are an adequate way to 
deal with non Gaussian error distributions. We will show that 
training a Fuzzy Inference System (FIS) of the Takagi-Sugeno 
type, using an Entropy criterion, leads to prediction error 
distributions that are narrower than using what “everybody” 
uses, the MSE criterion. 

II.  TRAINING MAPPERS 
Any system that emulates an input-output transfer function 

and whose performance depends on the tuning of internal 
weights or parameters is called a mapper. Neural networks or 
fuzzy inference systems are mappers, for instance, but so are 

time series generated by ARIMA methods, for instance.  
To train a mapper one must consider a three block 

structure, such as depicted in Figure 1: 
a) The mapper g, with its internal structure and weights 

w 
b) The performance criterion. 
c) The training algorithm. 

 

 
Figure 1 – Basic arrangement of a mapper identifying its three main modules 

 
The basic idea for a supervised training of a mapper with 

an Entropy criterion is to select a set of weights that will lead 
to an output presenting a distribution of (Target-Output) errors 
as a Dirac function (meaning that all errors would be equal, 
see Figure 2). And just by adding to the results a bias 
corresponding to the mean of the pdf of the errors, i.e., the 
deviation from zero, we will have reached a machine whose 
output exactly reproduces the real data. 

 

 
Figure 2– A mapper producing a systematic error ε for all inputs will display a 
error density function like a Dirac function 

 
A Dirac function has minimum entropy. Therefore, it is 

easy to understand that training a mapper to minimize the 
entropy of the pdf (probability distribution function) of the 
errors approximates us to the Dirac function and minimizes 
the information content of that distribution.  

III.  ENTROPY 
Information Theoretic Learning (ITL) is a framework that 

became successful in developing an approach to estimating 
the entropy of a set given a certain sample [8][9]. Entropy is a 
concept developed in information theory that formalizes the 
notion of information content. The less predictable a message 
is, the larger is its information content; a message perfectly 
know a priori has a zero information content. 

Shannon [10] defined the entropy of a probability 
distribution P = (p1, p2,…, pn) as 
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Although this definition has been widely applied, namely 
in communication systems, other definitions are possible. 
Renyi’s entropy [11] is defined as 
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Renyi’s entropy is a family of functions HRα depending on 
a real parameter α. There is a relation between Shannon’s and 
Renyi’s definitions: 
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When α = 2, we have what is called quadratic entropy 
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This definition can be generalized for a continuous random 
variable Y with pdf fY(z): 
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It can be shown that Shannon’s entropy and Renyi’s 
entropy inducer the same order relation in a functional space 
and therefore minimizing Reny’ys entropy leads to the same 
result as minimizing Renyi’s entropy. However, Renyi’s 
entropy, with its sum of probabilities, is much more amenable 
to algorithmic implementation than Shannon’s entropy with its 
sum of weighted logarithms of probability. 

IV.  ESTIMATING A PDF WITH PARZEN WINDOWS 
The estimation of the pdf of data from a sample constituted 

by discrete points M
i R∈y , i = 1,…,N in a M-dimensional 

space, may be done by the Parzen window method [12]. This 
technique uses a kernel function centered on each point; it 
looks at a point as being locally described by a probability 
density Dirac function, which is replaced or approximated by 
a continuous set whose density is represented by the kernel. If 
a Gaussian kernel is used, the expression of the estimation Yf̂  
for the real pdf fY of a set of N points is a summation of 
individual contributions 
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where G(.,.) is the Gaussian kernel and σ2I is the covariance 
matrix (here assumed with independent and equal variances in 
all dimensions). In each dimension, we have 
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It is easy to understand that the “size” of the window, here 
defined by the value of σ, is important in obtaining a smoother  
(for larger values) or more “spiky” estimate for fY. This is 
illustrated in Figure 3, for a sample of 8 points around which 
Gaussian windows have been placed. 
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Figure 3 – Influence of the window size in the smoothness of the pdf 
estimation – narrower windows (above) lead to a more spiky approximation. 
 

The ability to obtain well behaved approximations of the 
pdf of a set may be used with advantage to help the 
convergence of optimization algorithms that risk getting stuck 
in local optima of a more spiky function. 

 

V.  ITL CRITERION 
Combining Renyi’s definition of the entropy of a pdf with 

an estimate of the pdf by the Parzen window method, we 
reach an entropy estimator for a discrete set of data points {y} 
as 
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In this expression we recognize the convolution of 
Gaussian functions, which has the following interesting result: 
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This means that, in order to calculate entropy, we do not 
have to calculate any integrals but simply the Gaussian 
function values of the vector distances between pairs of 
samples. In ITL vocabulary, V(y) is called the information 
potential (IP) of the data set. As the objective is to minimize 
H, one can instead maximize the information potential V. So, 
Max V becomes the cost function for optimizing a trainable 
mapper with minimum output entropy [13]. 

The discovery of weights in a mapper may be done by 
applying a suitable optimization method that will discover the 



 

weights w that minimize the objective function  
 )(H   min R2 w  (11) 

This can be achieved by the classical back-propagation 
algorithm [14]. In this paper, however, we have applied an 
evolutionary algorithm to minimize entropy: EPSO, 
Evolutionary Particle Swarm Optimization. 

One must stress that this is not speculative work. The 
theoretical foundations of ITL are solidly established and have 
been object of a considerable number of applications, from 
blind source separation [15] to clustering and to the 
supervised training of nonlinear adaptive systems [16]. 
However, to the authors’ knowledge, it is the first time that 
such concepts are applied out of the context of signal 
processing and in the power system domain. This cross 
fertilization is hoped to be fruitful to the development of better 
models in power systems. 

VI.  APPLICATION TO TS-FIS 
The prediction of wind power output is done in this paper 

by a Takagi-Sugeno Fuzzy Inference System (TS-FIS) [17]. It 
may be viewed as neuro-fuzzy mapper and is commonly 
trained with the back-propagation algorithm under supervised 
training. The most widespread tool is the ANFIS [18]. One 
has training and test sets with target values T and the training 
task deals with the information content of the errors ε = T – y 
between target and the output y.  
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Figure 4 – TS-FIS scheme. Each input pattern X activates some membership 
functions; the combination of these fires a rule k with strength gk. The 
weighted combination of rule firing strengths gives the output of the system. 

 
In a TS FIS, one has rules that are fuzzy in their antecedent 

and crisp in their consequent. A general form of a rule k with 
output yk is 

IF (x1 is A and … and xp is Z) THEN yk = y(x, w) 

The antecedent of rule k is a fuzzy set whose membership 
function gk is the intersection of fuzzy sets describing 
conditions A,…,Z. Usually, the T-norm used to represent 
intersection is the product (of the membership values of each 
input variable). 

The consequent of a rule k is a function fk of inputs. In 0-
order TS-FIS, fk is constant and, therefore, fk = wk. In 1st-order 
TS-FIS, fk is a linear combination of inputs such as in 
 fk = wk + wk1x1 + … + wkpxp (12) 

The output of a TS-FIS is a weighted sum of the responses 
of all the rules 
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To optimize the performance criterion, we have to discover 
the adequate weights w of the consequents of rules. Other 
parameters may be adjusted by training in TS-FIS. If the 
membership functions of the inputs are Gaussian functions, 
one can also calculate updates on central variance and spread 
of these functions. However, this is not convenient in many 
cases, because the inputs are associated with linguistic 
expressions and the change in the shape or location of the 
membership functions creates dissociation with the linguistic 
labels they are supposed to represent.  

In this paper we are not applying ANFIS: it performs a 
minimization of the MSE. It must be highlighted that there are 
versions of ANFIS that add to the MSE function a term that 
has been called information entropy [18], because of the 
analogy with the formula of Shannon Entropy. However, this 
term is a function of the firing strengths of the FIS and not 
related to the data fitting. It has been introduced heuristically 
without any theoretical background to support it and does not 
have the effect of the optimization of the entropy of the error 
distribution as proposed by the ITL model.  

VII.  EPSO AS THE OPTIMIZER 
EPSO – Evolutionary Particle Swarm Optimization, is a 

hybrid in concepts of Evolutionary Algorithms and Particle 
Swarm Optimization [19][20] and with applications in Power 
Systems [21]. It is an Evolutionary Algorithm (close to the 
family of Evolution Strategies and Evolutionary 
Programming) where the recombination operator is made self-
adaptive and is non-conventional: it is, in fact, the “movement 
rule” of PSO (Particle Swarm Optimization) methods. 

Recombination is an operation that produces new offspring 
from some form of combination of parent individuals, chosen 
in the population (the classical recombination operator, in GA, 
is called crossover). The movement rule of PSO generates a 
new individual as a weighted combination of parents, which 
are: a given individual in the population, the best ancestor of 
this individual and the best ancestor of the present generation. 
This may be seen as a form of intermediary recombination. In 
this type of recombination in evolutionary algorithms, a new 
individual is formed from a weighted mix of ancestors, and 
this weighted mix may vary in each space dimension. 

The recombination rule for EPSO is the following: given a 
particle iX , a new particle new

iX results from 
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where the symbol * indicates that these parameters will 
undergo evolution under a mutation process, and 

bi – best point found by the line of ancestors of individual i 
up to the current generation 



 

bg – best overall point found by the swarm of particle in 
their past life up to the current generation 
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   generation k  
wi1 – weight of the inertia term (a new particle is created 
in the same direction as its previous couple of ancestors) 
wi2 – weight of the memory term (the new particle is 
attracted to the best position occupied by its ancestors) 
wi3 – weight of the cooperation or information exchange 
term (the new particle is attracted to the overall best-so-far 
found by the swarm). 
wi4 − weight affecting dispersion around the best-so-far 

C − a diagonal matrix with each element in the main 
diagonal being a binary variable equal to 1 with a given 
communication probability p and 0 with probability (1-p); 
in basic models, p = 1 but in advanced models p = 0.2 has 
proven to be more effective in assuring the progress of the 
algorithm, by limiting communication among the particles 
of the swarm – yet another means of shaping the 
recombination operator. 

Assigning a value for p less than 1 implies the adoption of 
a communication topology among particles in the form of a 
stochastic star [22]. This constitutes an improvement over 
classical deterministic star topologies that allow EPSO 
algorithms to display better convergence properties. 

 EPSO is a self-adaptive algorithm because the weights that 
regulate recombination are taken as strategic parameters and 
are mutated and allowed to evolve. Selection acts on the 
recombination operator weights and, from generation to 
generation, a better (adaptive) recombination operator 
evolves. 

In a diversity of problems, EPSO has been showing better 
performance than other meta-heuristics such as Genetic 
Algorithms or the classical Particle Swarm Optimization 
algorithm [23][24]. It tends to escape from local optima and is 
robust, i.e., generates results with a narrow variance in a series 
of runs for a problem with random initialization. 

VIII.  PREDICTION OF GENERATION FROM A WIND PARK 
We will now present the results for the prediction of the 

power output of a real wind park located in northern Portugal, 
having a total installed capacity of about 40 MW with 
generators having each a capacity of about 1 MW located on 
the top of a mountain range. 

The data for this exercise are composed of three time 
series: wind speed, wind direction and power output of the 
wind park, collected every ten minutes, collected from 
January 1, 2004 to February 20, 2005. For confidentiality 
reasons, actual power output has been transformed into a 
percentage of maximum available capacity of the park. 

The objective is to show that the application of the ITL 

criterion may produce better mappers than the application of 
the classical Mean Square Error. To demonstrate this, we have 
trained two 0-order TS-FIS using an EPSO algorithm; the 
MSE model was meant to find weights that minimize the 
Mean Square Error, and the ITL model to find weights that 
minimize Renyi’s Quadratic Entropy of the error distribution. 
We have selected 5000 points to train and test the FIS and 
divided them in a training set of 1000 points and a test set 
with the other points. 

Figure 5 shows a plot of untreated data, as collected from 
the SCADA system, of 9993 measurements of wind speed vs. 
wind park power output. It is obvious that the representation 
of the wind speed/power output relation by a theoretical 
function will lead to a result far from satisfactory. The data 
used for training the TS-FIS have been subject to scrutiny to 
eliminate anomalous points – for instance, derived from the 
disconnection of generators for maintenance (that is why one 
may find in the figure some points with high wind speed and 
zero power output – but not to be confused with other points 
on the far right, where the zero output is explained by the cut-
off security operation of the wind generators when wind speed 
is excessive). 

In Figure 6 we plot the same data showing wind speed and 
direction, as measured at a point close to the wind park. It is 
quite obvious that wind frequency changes with wind 
direction. A plot like this helps in the design of the layout of 
wind parks. 

 
Figure 5 – Plot of wind speed (x axis) vs. power output of the wind park (y 
axis).  Power output is represented in p.u. relative to the total installed 
capacity. Data untreated. 



 

 
Figure 6 – Distribution of wind speed (in m/s) and direction at the measuring 
location near the wind park.  Each point is the tip of a vector whose size is 
proportional to wind speed and angle is related to wind direction. 
 

We have defined a 0-order TS-FIS, with the following 
characteristics: 

a) Two input variables: wind speed S, in m/s, and wind 
direction D, in degrees 

b) The range of S is between 0 and 30, and the range of 
D is between 0 and 360 

c) The range of power output P is between 0 and 1 
d) The universe of discourse of S was partitioned in 5 

fuzzy sets with Gaussian membership function 
e) The universe of discourse of D was partitioned in 2 

fuzzy sets with Gaussian membership function 
We have maintained these membership functions with 

central value and spread fixed and only optimized the weights 
w of the 10 fuzzy rules of the system. To find optimal 
weights, we used a simple EPSO algorithm with 20 
individuals (particles) and replication factor r = 2 (each parent 
gives birth to two descendants). We used Gaussian mutations 
with learning rate τ = 0.5 and communication probability 
p=0.2. 

We trained two models with EPSO: minimizing MSE and 
Entropy. The same stopping criterion was used for both 
models (number of iterations without improvement of the 
fitness function) and they only differed in the fitness function 
used. For the Entropy model, we the results were obtained 
using Gaussian Parzen windows with fixed size (σ = 0.01). 

From the theory behind the models, and knowing that the 
errors cannot have a Gaussian distributions (the non-linearity 
evident in Figure 5 makes sure of it), we expected that the 
error distribution of the predictions produced by the model 
trained with the Entropy criterion would be narrower than the 
one produced by the model trained under the MSE criterion. 

Figure 7 and Figure 8 plot the probability density functions 
of the prediction errors for both models, in the training and in 
the test set. In the case of the Entropy model, we have already 
subtracted the adequate bias value so that the mean error value 

became zero in both distributions. They clearly show that the 
error distributions from predictions of the MSE model have 
fewer values close to 0 than the distribution of errors resulting 
from the ITL model. This was an expected result [25]. 

This means that the entropy model generates an error pdf 
closer to a Dirac function. It is a better result from any point 
of view than the one produced by the MSE model. This is 
seen as a valuable and meaningful result because it 
demonstrates in a practical real world example what the ITL 
theory was predicting, i.e., that using an Entropy criterion 
would lead to a prediction model with errors in general closer 
to zero than with a system trained using only variance (the 
MSE) as the optimizing criterion. 

The value of Renyi’s Entropy, for the error distribution in 
the test set, generated by the application of the MSE model, 
was of -0.6648, while with the application of the Entropy 
model it was of -1.1782 – naturally, a smaller value. 
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Figure 7 – Probability density functions of TS-FIS prediction errors, for both 
models, estimated with Parzen windows, for the training set. Plots generated 
with Parzen windows with σ = 0.01. 
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Figure 8 - Probability density functions of TS-FIS prediction errors, for both 
models, estimated with Parzen windows, for the test set. Plots generated with 
Parzen windows with σ = 0.01. 
 

To be able to appreciate the impact of these results on the 
time domain, we plot on Figure 9 a sequence of values from 
the test set, including the actual power measure at the SCADA 
and the predictions produced by the MSE and the ITL models. 

This is a crude plot, before a squashing filter converting all 
values below zero into a prediction of zero output. It is visible 
in this figure that the curve generated by the Entropy based 
predictor follows more closely the target (real values) curve 
that the curve generated by the MSE training objective. This 
closeness is not uniform over the whole year of data and 
Figure 10 displays a period of the year where the two models 
are both very close to the observed curve. 
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Figure 9 – Comparison, on a subset of the test set (7 weeks), of the 
performance of the two models. The x axis unit is days, but the plotted values 
are hour values. The y axis is in p.u. of nominal installed capacity. It is clear 
that the MSE criterion did not perform as well as the ITL Entropy criterion. 

 

 
Figure 10 – Comparison, in 9 weeks, of the performance of the two models. 
The Entropy trained model is still marginally better than the MSE trained 
predictor, as observed in places marked by circles. 
 

In general, examining the 5000 points we will find some 
places where the MSE model even produced a smaller error. 
However, they are outnumbered by the number of cases where 
the model trained by minimizing Entropy overcomes the 
model trained by minimizing MSE. This is not surprising 
because the analysis of the error probability density functions 
is telling us exactly this: that the Entropy model will generate 
errors that in general are closer to zero. 

IX.  CONCLUSIONS 
The objective of this paper is to show that the Entropy 

concept, in the manageable form achieved by the Information 
Theoretic Learning approach, is a powerful tool with the 
potential to lead to the development of better prediction 
models. 

Researchers and developers should question the blind 
application of the Mean Square Error, as a measure of 
performance of Fuzzy Inference Systems or Artificial Neural 
Networks, or any other model of reality depending on 
parameters adjusted with training. The MSE criterion is a 
quadratic function of the errors and, in fact, it represents the 
variance of the error distribution. By considering only 
variance in the optimization of parameters, methods based on 
the MSE are not sensitive to information contained in 
moments of higher order in the distribution of errors. In many 
real problems error distributions are not well behaved nor 
symmetrical or Gaussian (which are the distributions that 
contain all information in their first two moments – mean and 
variance). Therefore, a method that relies on the minimization 
or error variance is not using to the full extent the information 
contained in data. 

Using Entropy as a performance criterion was not really 
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manageable until an approach – Information Theoretic 
Learning – combined it, in the form of Renyi’s Entropy, with 
Parzen windows. Nonetheless, computing this criterion is 
more expensive than computing the MSE criterion, because 
the latter only depends on (the square of) errors and the 
former depends on (the Gaussian of) the differences of errors. 
For off-line systems, however, this extra effort is worthwhile 
in the development phase, if it indeed leads to better 
predictions. 

The paper contains also the demonstration of the 
independence of the three blocks involved in the training of 
mappers: the mapper itself, the cost criterion and the 
optimization algorithm. In fact, the fuzzy inference system 
was not trained by back-propagation but by applying a meta-
heuristic EPSO – Evolutionary Particle Swarm Optimization. 
We could have used a platform such as ANFIS for the 
application of the MSE criterion, but this would not provide 
weight calculation for the Entropy criterion. To put all 
simulations under the same conditions, and not make the 
comparisons dependent on the method used, we have applied 
the same algorithm (EPSO) to both models and built Takagi-
Sugeno Fuzzy Inference Systems from there. It is also, by the 
way, the first time EPSO is used for such an application, with 
success. 

The example presented belongs to the intensive research 
efforts presently done in the area of wind prediction and wind 
power forecasting. Any technique that helps in extracting 
more information from data will help, because the problems 
are very difficult, especially in medium and long term 
prediction up to 72 hours. 

The model presented belongs to the category of wind 
prediction models that are composed of a series of models, 
from meso-scale meteorological predictions to the local 
prediction of wind speeds and finally to the prediction of 
power output of wind parks. It is not a full prediction model 
but only a component of a more complex composite wind 
power prediction system.  

Wind prediction is still an exercise with a large uncertainty. 
In Europe, where wind generation is assuming an important 
role, models are under development aiming at producing 
predictions of wind speed up to 72 hours, but average errors 
are still in the range of 25%. Any small improvement is 
extremely valuable. Training models with entropy concepts 
will provide one way to such improvement. 
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