
FINDING FAILED ELEMENT POSITIONS IN LINEAR ANTENNA
ARRAYS USING GENETIC ALGORITHM

Ali Akdağlı Kerim Güney Dervis Karaboğa* Bilal Babayiğit*

 e-mail: akdagli@erciyes.edu.tr e-mail: kguney@erciyes.edu.tr e-mail:karaboga@erciyes.edu.tr
 Erciyes University, Faculty of Engineering, Department of Electronics Engineering, 38039, Kayseri, Turkey

*Erciyes University, Faculty of Engineering, Department of Computer Engineering, 38039, Kayseri, Turkey

Key words: Antenna array, failed elements, genetic algorithm

ABSTRACT
In this work, a simple approach based on the genetic
algorithm (GA) is presented for finding the positions
of defective elements in a linear antenna array. The
GA is used to minimize the difference between the
samples of far-field power pattern of an array with
failed elements and the measured one. Simulation
results are shown for 30 elements Chebyshev array
with one and multiple failed elements to illustrate the
performance of the presented approach.

I. INTRODUCTION
Element failures in antenna arrays destroy the symmetry
and cause unacceptable pattern distortion, for example, a
significant increase of both sidelobe and ripple level of
the power pattern. This problem can be solved by
replacing the defective elements in aircraft antennas.
However, this is a critical problem in space platforms.
Active array antennas have the advantage that the
radiation pattern can be restored by changing their feeding
distribution from base station [1]. In order to compensate
the effects of failed elements, the excitations of unfailed
elements can be readjusted, thus a pattern with a
minimum loss of quality with respect to the original one is
produced. In the literature, several methods [2-5] have
been proposed to perform this compensation by
numerically finding a new set of excitations of the
unfailed elements that optimizes some objective function.
However, it is obvious that these methods need to know
the position and the number of the failed elements in the
array.

Recently, Rodriguez at al. [6] demonstrated how to use
the genetic algorithm [7, 8] (GA) for finding the defective
elements in a planar array. It is well known that the GA,
which is based on natural selection and genetic science, is
a parallel, robust, and probabilistic search technique that
is simple and easily implemented without gradient
calculation, compared to the conventional gradient-based
search procedures. Most important of all, the GA also
provides a mechanism for global search that is not easily

trapped in local minima. Due to the fascinating features
mentioned above, the GA has been applied to a wide
variety of electromagnetic design and antenna problems.
In this study, we used the GA to find the number and
positions of defective elements in a linear antenna array.
A cost function which represents the difference between
the some samples of damaged radiation pattern and
measured one is constructed and minimized by means of
the GA.

The GA version adopted here is different from the
standard GA versions existing in the literature since it
uses an adaptive mutation rate strategy. In the following
section, a basic GA and the GA used in this work are
described.

II. GENETIC ALGORITHM
The GA is a general purpose optimization algorithm with
a probabilistic component that provides a means to search
poorly understood, irregular spaces. John Holland [7]
originally developed the GA and provided its theoretical
foundation in his book. Holland developed the GA to
simulate some of the processes observed in natural
evolution. Evolution is a process that operates on
chromosomes rather than on living beings. Natural
selection links chromosomes with the performance of
their decoded structure. The process of natural selection
cause those chromosomes that encode successful
structures to reproduce more often than those that do not.
Recombination process creates different chromosomes in
children by combing material from the chromosomes of
the two parents. Mutation may cause the chromosomes of
children to be different from those of their parents.

The goal of the GA is to find a set of parameters that
minimizes the output of a function. The GA differs from
most optimization methods, because they have the
following characteristics:

1. It works with a coding of the parameters, not the
parameters themselves.

2. It searches from many points instead of a single point.

3. It doesn’t use derivatives.

4. It uses random transition rules, not deterministic rules.

The GA is a stochastic optimization algorithm which is as
robust as it is versatile. The algorithm repetitively applies
three stochastic operators on a population of designs,
reproduction, crossover, and mutation. The GA has the
desirable attribute that by operating on a large population
of designs, and by implementing stochastic transition
rules, it avoids getting trapped into a local minima.
Another attractive feature of this algorithm is that it can
generate a number of distinct and high performance
designs and offers the designer a number of candidates for
the final design.

The GA requires the problem of maximization or
minimization to be stated in the form of a cost (objective)
function. In a GA, a set of variables for a given problem is
encoded into a string (or other coding structure),
analogous, to a chromosome in nature. Each string,
therefore, contains a possible solution to the problem. To
determine how well a chromosome solves the problem, it
is first broken down into the individual sub strings which
represent each variable and these values are then used to
evaluate the cost function, yielding a ‘fitness’. The GA
selects parents from a pool of strings (population)
according to the basic criteria of ‘survival of the fittest’. It
creates new strings by recombining parts of the selected
parents in a random manner. In this manner, the GA is
able to use historical information has a guide through the
search space.

The repopulating of the next generation is done using
three methods: reproduction, crossover, and mutation.
Through reproduction, strings with high fitnesses receive
multiple copies in the next generation while strings with
low fitnesses receive fewer copies or even none at all.
Crossover refers to taking a string, splitting with into two
parts a randomly generated crossover point and
recombining it with another string which has also been
split at the same crossover. This procedure serves to
promote change in the best strings which could give them
even higher fitnesses. Mutation is the random alteration of
a bit in the string which assists in keeping diversity in the
population.

The GA works through function evaluation, not through
differentiation or other such means. Because of this trait, a
GA dose not care what type of problem it is asked to
minimize only that it be properly coded. Thus the GA is
able to solve a wide range of problems: linear, nonlinear,
discontinuous, discrete, etc.

A Basic Genetic Algorithm

The pseudo code of a basic GA is as below:

Initialize P(t=0); /*P(0)=initial population*/
Evaluate each member in P(t);
While(not termination condition) do

{
Generate P(t+1) from P(t) as follows:

{
Select individuals from P(t) on basis of

fitness (selection operation);
Recombine them using genetic

operators (crossover and mutation operations);
}

t=t+1
Evaluate each member in P(t);

}

The initial population required at the start of the algorithm
is a set of number strings generated by the random
number generator. Each string is a representation of a
solution to the optimization problem being addressed.
Binary strings are commonly employed. Associated with
each string is a fitness value as computed by the
evaluation unit. A fitness value is a measure of the
goodness of the solution that it represents. The aim of the
genetic operators is to transform the set of the strings into
the sets with higher fitness values.

The reproduction operator performs a natural selection
function known as “seeded selection”. Individual strings
are copied from one set (representing a generation of
solutions) to the next according to their fitness value, the
greater the probability of a string being selected for the
next generation.

The crossover operator chooses pairs of strings at random
and produces new pairs. The simplest crossover operation
is to cut the original parent strings at a randomly selected
point and exchange their tails. The number of crossover
operations is governed by a crossover rate.

The mutation operator randomly mutates or reverses the
values of bits in a string. The number of mutation
operations is determined by a mutation rate.

A phase of the algorithm consists of applying the
evaluation, reproduction, crossover and mutation
operations. A new generation of solutions is produced
with each phase of the algorithm.

The Genetic Algorithm Used in This Work

The GA version adopted in this study was proposed by
Karaboga at al. [9]. This version is different from standard
GA versions existing in the literature since it uses an

adaptive mutation rate strategy. The pseudo code of this
algorithm is given below:

Initialize P(t=0); /*P(0)=initial population*/
Evaluate each member in P(t);
While (not termination condition) do

{
Generate P(t+1) from P(t) as follows:

{
Select individuals from P(t) using

seeded selection, random selection and elite procedures;

Recombine selected individuals
applying crossover and mutation operations (mutation
operator uses an adaptive mutation rate strategy, not
constant mutation rate);

}
t=t+1
Evaluate each member in P(t);
Apply fitness scaling;

}

Note a fitness scaling unit for normalizing the fitness
values computed by the evaluation unit. A scaling
window is used in this normalization process to
distinguish between good and better solutions. The
reproduction unit also implements a random selection
procedure, controlled by a parameter called the generation
gap and an elite procedure for preserving the fittest
solution in each generation, in addition to the seeded
selection process described earlier.

III. THE METHOD

The far field array factor of an equally spaced linear array
with N isotropic elements oriented along the z-axis can be
written as:

∑
=

θ
λ
π

=θ
N

1n

)sin(d2jn
n ea)(AF (1)

where an is the excitation of the nth element, d is the
interelement spacing, λ is the wavelength, and θ is the
angle from broadside. If nth element is failed, its
excitation an is assumed to be zero. To find the number
and positions of failed elements by using the GA, the
following cost function is employed.

∑
=

θ−θ=
M

1k
kmko)(AF)(AFC (2)

where M is the number of samples used in the
comparison. AFo(θk) and AFm(θk) represent the obtained
value of the pattern of array whose defective element
positions will be determined by GA and the value of the
measured pattern at the kth sample point, respectively.

Since it is very difficult to measure whole damaged
pattern in all directions, a limited number of samples M is
used.

IV. SIMULATION RESULTS

In the study, to show the effectiveness of the GA, a real
failed antenna array is not performed, but it is simulated.
In the simulation process, a 30-dB Chebyshev array
pattern for 30 equispaced elements with λ/2 interelement
spacing is used as the initial pattern. The measured data
are produced by randomly cancelling the some element
excitations of this Chebyshev array. For simplicity, the
measurement errors are ignored in this work. In the
optimization process, the values of GA parameters such as
population size, crossover rate and mutation rate are
chosen as 30, 0.8 and 0.02, respectively. Since there are
two possibilities for the status of each array element
(failed or unfailed), one bit (0 for failed and 1 for unfailed
element) satisfies encoding of each array element. Thus,
30 bits are used for 30-elements initial Chebyshev array.
The calculations are performed on a personal computer
with a Pentium Celeron processor running at 1700 MHz.

To verify the capability of the GA for finding the
defective elements, a number of element failure cases are
investigated. The number of samples (M) is 5 and this is
sufficient to find the accurate solution. The sample
directions are chosen as 36o, 72o, 108o, 144o and 180o. The
simulation results using 10 random configuration of one,
two and three defective elements are obtained and listed
in Tables 1-3, respectively. From Tables 1-3, it is seen
that the GA can find the failed elements in all cases.

Table 1. Simulation results obtained by using 10 random
configurations of one defective element

Failed element
position

Elapsed
time (s)

1 1
3 1
6 2
10 1
12 2
15 1
17 1
21 1
25 1
29 2

It is noted that the elapsed times given in Tables 1-3 do
not depend on the positions of the failed elements. The
reason of different elapsed time values for the same
problem (for example one failed element) is that the GA
produces the initial solutions randomly. Hence, even for
the same problem, the elapsed time might change for each

Table 2. Simulation results obtained by using 10 random
configurations of two defective elements

Failed element
positions

Elapsed
time (s)

1,30 2
2, 17 3
7, 25 7
9, 15 3
3, 25 2
13, 16 2
10, 21 2
18, 20 5
23, 29 2
5, 26 10

Table 3. Simulation results obtained by using 10 random
configurations of three defective elements

Failed element
positions

Elapsed
time (s)

1, 9, 20 32
5, 26, 30 120
2, 8, 25 222

6, 12, 22 36
17, 23, 29 70
8, 12, 16 13
3, 6, 15 200
11, 18, 27 18
9, 13, 22 12
17, 24, 28 44

run. However, it is obvious from Tables 1-3 that the
elapsed time increases as the number of failed elements
increases.

It should be also noted that when the number of elements
in the array is increased or if measurement errors are
included, the problem of finding defective elements gets
more difficult. In this case, the number of measured
sample required might increase and the GA can still
achive the sufficient results but it may take much more
computational time.

V. CONCLUSION
The failed element positions in a linear antenna array are
determined with the use of the GA. The measured data for
the damaged pattern are produced by simulating a
30-elements Chebyshev array with some defective
elements instead of a real failed antenna array. One, two
and three defective elements case are investigated.
Simulation results obtained by using only 5 samples of
damaged pattern show that the GA is capable of finding
the right configuration in all cases.

REFERENCES
1. R. J. Mailloux, Phased Array Antennas Hanbook,

Artech House, Inc., Norwood, MA, 1994.

2. B. Yeo, Y. Lu, Array Failure Correction with a
Genetic Algorithm, IEEE Transactions on Antennas
and Propagation, vol. 47, pp. 823-828, 1999.

3. T. J. Peters, A Conjugate Gradient-Based Algorithm
to Minimize the Sidelobe Level of Planar Arrays with
Element Failures, IEEE Transactions on Antennas
and Propagation, vol. 39, pp. 1497-1504, 1991.

4. R. J. Mailloux, Array Failure Correction with a
Digitally Beamformed Array, IEEE Transactions on
Antennas and Propagation, vol. 44, pp. 1542-1550,
1996.

5. J. A. Rodriguez, F. Ares, E. Moreno, G.
Franceschetti, Genetic Algorithm Prosedure for
Linear Array Failure Correction, Electronics Letters,
vol. 36, pp. 196-198, 2000.

6. J. A. Rodriguez, F. Ares, H. Palacios, J. Vassal’lo,
Finding Defective Elements in Planar Arrays Using
Genetic Algorithm, Progress in Electromagnetics
Research, PIER 29, pp. 25-37, 2000.

7. J. H. Holland, Adaptation in Natural and Artificial
System, Ann Arbor: University of Michigan Press,
USA, 1975.

8. L. Davis, Handbook of Genetic Algorithms, Van
Nostrand Reinhold, NY, New York, 1991.

9. D. Karaboga, K. Güney, N. Karaboga, Simple and
Accurate Effective Side Length Expression Obtained
by Using a Modified Genetic Algorithm for the
Resonant Frequency of an Equilateral Triangular
Microstrip Antenna, International Journal of
Electronics, vol. 83, pp. 99-108, 1997.

