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Abstract

In concurrent with finer-granular process technologies, it

is becoming extremely difficult to keep critical physical de-

vice parameters within desired bounds, including channel

length, gate oxide thickness, and dopant ion concentration.

Variations in these parameters can lead to dramatic vari-

ations in access latencies in Static Random Access Memory

(SRAM) devices: Different lines of the same cache may have

different access latencies. A simple solution to this prob-

lem is to adopt the worst-case latency paradigm. While this

egalitarian cache management is simple, it may introduce

significant performance overhead for data cache accesses.

To overcome varying access latencies across different data

cache lines, we employ a small table storing the access laten-

cies of cache lines. This table is accessed during data cache

access to give a hint to the hardware about how long to wait

for data to become available.

1. Introduction

While, over the last three decades, scaling of Comple-

mentary Metal Oxide Semiconductor (CMOS) devices has im-

proved the performance of computer systems dramatically,

keeping transistor quality within desired bounds has been be-

coming a challenging problem. This problem is referred to as

process variation and can be described as the deviation from

intended or designed target values of a circuit parameter of con-

cern, such as channel length or width, gate oxide thickness, and

random placement of dopants in a channel. It can lead to signif-

icant variability in chip performance, power consumption, and

stability [1, 2, 3]. Such variations may occur not only across

identically designed neighboring devices [4] - intra-die varia-

tions - but also across different identically designed chips [5] -

inter-die variations.

In this study, we focus on intra-die variations in cache mem-

ories, because they have become more prevalent as we go into

deep sub-micron silicon technologies. Especially, the random

placement of dopants, as a result of difficulties in handling finer

process technologies, can lead to a threshold voltage mismatch

among transistors in the same hardware component. SRAM

structures are quite prone to random placement of errors due

two major reason: First, they constitute a significant portion of

die area (for instance, for Alpha 21264 and Strong ARM, 30%

and 60% of the die areas, respectively, are devoted to cache

structures [6]) and their share increases with next technology

generation; Second, SRAM structures are typically designed

with minimum-sized transistors for density reasons [7]. As a

result, different cache lines of the same cache may have differ-

ent performance and energy behavior.

Although threshold voltage mismatch can cause read/write

stability failures [8, 9], in this study, we focus on access time

failures (performance effects) of threshold voltage fluctuations
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Figure 1. Six-transistor SRAM cell storing one bit.

of neighborhood transistors in SRAMs. Let us explain how

threshold fluctuations of devices in a SRAM cell can affect the

cell’s access time. Figure 1 depicts a six transistor cell, which

is commonly employed in SRAM designs. The cache access

time strongly depends on the cell access time, which is defined

as the interval required to see a specific voltage difference (say,

ΔMIN ≈ 0 1 CC ) between two bitlines. For a read opera-

tion, for example, both bitlines are first precharged, and then

the wordline is enabled (it is set to high). If the cell stores 0, as

in the figure, the bitline on the left side will discharge through

transistors T5 and T2. Any variation in the threshold voltages

( t) of these transistors due to a process parameter variation

can extend the discharging interval, causing access time fail-

ure if the delay is larger than the maximum tolerable limit. If

a cache line accommodates a cell with access time failure, ac-

cesses to this cache line must be delayed to give the failed cell

some extra time to achieve the required voltage difference on

the corresponding bitlines; this in turn results in delay viola-

tions in the cache structures. More specifically, for such SRAM

structures, the access latency will not be uniform; i.e., the access

latency varies across different cache lines. An easy way to han-

dle varying access latencies in a cache structure is to adopt the

worst-case access latency paradigm in the design: We delay the

access latency of regular cache lines - cache lines which are not

affected by process variation - to that of the cache line which are

the most severely affected. While this simple assumption makes

the design simple, it may lead a significant performance penalty

in regular cache line accesses. This performance penalty in-

creases as we move to the finer process technologies [10, 11].

In this study, we try to mitigate the performance overheads

on data cache accesses due to process variation in modern pro-

cessors. We use a small table, which is called as latency table,
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Figure 2. Accessing the data cache experiencing process varia-

tion. The latency information of the second pipe stage for each

data cache line is encoded in the latency table, which is accessed

at the same time when index bits of the data cache are decoded.

The timing of the second pipe stage of the data cache is adjusted

according to the value read out of the latency table.

to store the access latencies of each cache set. The latency table

is managed by the hardware and is accessed at the same time

when the data cache is accessed. The value read out of this ta-

ble gives the hardware a hint about how long to wait for the data

to become available.

The rest of this paper is structured as follows. In the next

section, we try to explain how the latency table is organized and

accessed in tandem with the data cache access. In Section 3,

we explain how we can minimize the number of faulty cache

sets. The experimental setup is given in Section 4. Experimen-

tal results are explained in Section 5. Finally, our concluding

remarks are given in Section 6.

2. Data Cache Access Under Process
Variation

The data cache access under process variation is depicted

in Figure 2. In our study, we focus on pipelined caches, since

they have becoming more prevalent due to their boosting per-

formance. We consider a 3-stage pipelined cache model as

suggested in [12]. According to this model, set address is de-

coded in the first stage. Wordline driving, bitline precharging

and monitoring the voltage difference between a pair of bitlines

by sense amplifiers take place in the second stage. Driving the

output multiplexors and the selected data out of the cache are

carried out in the last stage. Unlike the second stage, the first

and the last stages may be further divided into substages. Since

the bitline signals are weak, not digital, latching is possible only

after the voltage difference of analog bitlines is converted into

the digital by sense amplifiers, making the second stage indi-

visible [12]. Process variation may affect all of the these three

stages; however, the second stage is the most critical since it

cannot be divided further to lessen the performance effect of

the variations. Therefore, in our study we take only the varia-

tions that affect the second pipe stage into consideration. The

latency table encodes, for each cache set, the second pipe stage’s

latency.

Our latency table works on set basis: Since at compilation

time, in general, only the set (not the cache line) in which the

data reside can be determined (in our study we consider set

associative instruction caches, not direct mapped caches), we

consider the latencies at the set granularity (assuming that each

set has a single latency, which is defined as the largest latency

among all its lines).

To obtain the performance characteristics of the cache lines,

we can employ the March test [9], which was originally pro-

posed to test memory components’ functionality, and involves a

sequence of operations performed on different locations in the

memory. With this test, cache line i is characterized either as

regular (not affected by process variation), = 0; or as faulty

(affected by process variation), = 1.

As can be seen from Figure 2, the data cache and the latency

table are accessed simultaneously. Our basic assumption is that

the latency table access finishes until the first pipe stage of the

data cache is completed. This holds since the latency table is

very small. For example, 64 KB, 4 way set associative data

cache with 64 byte cache lines, the number of cache sets is 256.

And if we encode 4 different access latencies, each table entry

holds 2 bits (lo 4 = 2), requiring a latency table with the size

of 2 x 256 = 512 bits. The latency value read out of the latency

cache gives a hint to sense amplifiers to how long wait before

sending their output signals to multiplexors, which exercise in

the last pipe stage. Thus, the length of the second pipe stage

varies, depending on the corresponding devices in the second

pipe stage experiences process variation as well as the severity

of the variation.

3. Minimizing the Number of Faulty Cache
Sets

Our scheme relies on storing the latency information of the

second pipe stage of cache access in the latency table. Since the

access latencies stored in the table is set basis, rather than line

basis, it is possible that a set can include regular lines as well as

faulty lines. If this is the case, an access to a regular line in the

faulty set will be delayed, resulting in performance loss. Thus,

it is very important to minimize the number of imperfect sets.

To do so, we use our technique called line reshuffling [13],

which is similar to block rearrangement techniques proposed

by Mutyam and Narayanan [14]. They considered block rear-

rangement either between a pair of two adjacent cache sets or

among all cache sets. On the other hand, in our technique, we

perform line reshuffling among a specific number of cache sets,

which can be implemented by a programmable address decoder.

The control inputs of the pass transistors driving the word lines

are programmed in such a way that any set is allowed to include

th cache lines with the same access latency as much as possible.

For simplification, we confine reshuffling to way boundaries,

that is, reshuffling is allowed only among the cache lines within

the same way. We use reshuffling degree, the term to refer to

the number of address bits involving in reshuffling. If r and s
denote reshuffling degree and the number of sets, reshuffling is

done among 2r cache lines in consecutive sets belonging to the

same way. These lines constitute a reshuffling group and their

sets can be expressed as follows,

2r ≤ < 2r( + 1) where 0 ≤ < 2r

More details of our technique can be found in [13].
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Table 1. Major processor configuration parameters and their

values used in our experiments.

Processor Core

Functional Units 4 Integer ALUs, 2 Integer mult./divide,
4 FP add, 2 FP multiply, 2 FP divide/sqrt

RUU size 256 instructions
LSQ size 64 instructions
Fetch/Decode/Issue/Commit width 4 instructions/cycle
Fetch queue size 8 instructions

Cache and Memory Hierarchy

L1 instruction cache 64KB, 4-way (LRU), 64 byte blocks,
pipelined with 3-cycle latency

L1 data cache 64KB, 4-way (LRU), 64 byte blocks,
pipelined with 3-cycle latency

L2 cache 8MB unified, 8-way (LRU),
128 byte blocks, 12-cycle latency

Memory 300-cycle latency
Page size 8K

Branch Prediction

Branch predictor Combined, Bimodal 4K table, 2-level 2K table,
8-bit history, 4K chooser

Branch target buffer (BTB) 4K-entry, 4-way
Return-address stack 32

Table 2. Benchmarks used in our experiments and their impor-

tant characteristics.

Benchmark Number of Number of
Name Execution Data Cache

Cycles Accesses

bwaves 411954109 135420769

mgrid 284257419 154870565

applu 301706421 160920926

gamess 188126703 141902084

gzip 238701269 98261019

vpr 504901292 94231020

gcc 248621430 74891701

mcf 701231064 108931619

4. Experimental Setup

We evaluated our technique by modifying SimpleScalar

3.0 [15], a tool set that simulates application programs on a

range of processors and systems using a fast execution-driven

simulation, and outputs execution statistics, such as the dynamic

number of accesses to components in the memory hierarchy as

well as execution cycles. In this study, the sim-outorder com-

ponent of SimpleScalar has been modified to simulate the inte-

gration of our technique into an Alpha-like platform. The major

simulation parameters of our target processor are listed in Table

1. We used some codes from the SPEC2000 suite (mgrid, ap-

plu, gzip, and vpr) as well as some codes from the SPEC2006

suite (bwaves, gamess, gcc, and mcf) [18] in our experiments.

Since the simulation takes a long time to run the benchmarks,

we considered, to completion, we used SimPoint [16] to gener-

ate simulation points. For each benchmark, we fast forwarded

a specific number of instructions, as suggested by Sherwood et

al. [17], and then simulated the next 500 million instructions on

predetermined simulation points. Table 2 gives the number of

execution cycles and the number of data cache accesses of these

benchmarks under the configuration parameters listed in Table

1.

5. Experimental Results

Before delving into the details of experimental results, we

want to explain the schemes whose experimental results are un-

der consideration.

• Perfect Scheme: This reflects the case where there is no

cache line experiencing process variation, and each data

cache access takes 3 cycles to complete. This setup cor-

responds to ideal case. The results given in Table 2 be-

long to this scheme.

• Delayed Scheme: This corresponds to worst-case

paradigm; accessing any cache line takes an amount of

time which is equall to the access time of the slowest

cache line. Although it is a very simple solution to the

problem of process variation, as explained later, it intro-

duces huge performance degradation.

• Oracle Scheme: It is useful from theoretical perspec-

tive, rather practical perspective, and can provide a ba-

sis to measure the the effectiveness of our scheme. In

this scheme, we have a hypothetical predictor, which can

foretell for each cache access whether the corresponding

cache line is affected by process variation. If the line is

regular, the cache access is completed in 3 cycles; other-

wise the cache access takes an amount of time depending

on the severity of the variations.

• Latency Table (LT) Scheme: This is our scheme and

works with the latency table. The basic premise of this

scheme is that, since the size of the latency table is very

small compared to the data cache, an access to this table

is completed until the first pipe stage of the cache access

is finished. The latency value read out of the latency

cache gives a hint to sense amplifiers in the second stage

regarding how long to wait before sending their output

signals to multiplexors, which exercise in the last pipe

stage. Thus, the length of the second pipe stage varies,

depending on the corresponding devices in the second

pipe stage experiences process variation as well as on

the severity of the variation.

Here, we need to mention that the latency table itself may

be subject to process variation. However, because of the small

wordline capacitance of the few cells used in the table, even

with process variation, an access to this table is finished before

the first pipe stage of the data cache access completes.

In the experiments involving process variation, we take only

the variations into consideration that affect the second pipe

stage, delaying the stage by 1, 2, or 3 cycles with an equal

probability. More specifically, the regular cache line accesses

complete in 3 cycles while variation affected cache accesses

complete in either 4,5, or 6 cycles. Since we need to encode

four different access latency for the second pipe stage, we need

2 bits for each entry in the latency table. Moreover, we carry

out experiments for which 20% and 40% of cache lines are sub-

jected to process variation.

In our experiments, Monte-Carlo simulations were done to

model process variation. We have determined 5 different in-

struction cache setups, each one having randomly distributed

variation-affected lines. The performance simulations for each

benchmark were run 5 times, each one with a different cache

setup. Each performance result was calculated by taking the

average of the performance results from these 5 setups.

Figure 3 and Figure 4 present the results of the Delayed and

LT schemes for the cases where 20% and 40% of cache blocks

are assumed to be affected by variations. In both graphs, there
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Figure 3. Normalized execution cycles for the case where 20%

of cache blocks are assumed to be affected by variations.
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Figure 4. Normalized execution cycles for the case where 40%

of cache blocks are assumed to be affected by variations.

are two bars for each benchmark: the first bar indicates the per-

formance of the Delayed scheme while the second bar depicts

the performance of the LT scheme. The performance results are

given as normalized values with respect to values of the Perfect

scheme, the ideal case (the case where the data cache is im-

mune to process variation). From both figures, we can see that

the performance degradation become more severe as the per-

centage of faulty cache block increases. The severity of perfor-

mance loss introduced by the process variation is more preva-

lent for the scientific application programs (bwaves, mgrid, ap-

plu, and gamess), since they are, in general, more data intensive

compared to the integer benchmarks considered (gzip, vpr, gcc,

and mcf). The average performance values of the Delayed and

LT schemes are around 10.7% and 4.2% when the faulty cache

lines are 20%. When we increase to the percentage of the faulty

cache lines to 40%, the The average performance values of the

Delayed and LT schemes become 16.4% and 6.3%. The two

major implications of these results are: First, the worst-case

design (the Delayed scheme) can introduce a quite large per-

formance penalty, which is not tolerable for high performance

microprocessors; Second, the LT scheme can alleviate the per-

formance loss due to process variation quite effectively.

We indicate the performance comparison of the LT scheme

to the Oracle scheme in Figure 5. The left hand side corre-

sponds to the case where 20% of cache lines are assumed to be

affected by variations, while the right hand side corresponds to

the case where 40% of cache lines are assumed to be affected

by variations. The Oracle scheme is useful from theoretical per-

spective, rather practical perspective, and can provide us a clue

regarding to what extend the performance loss introduced by the

variations can be overcome. The performance loss of the Ora-
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Figure 5. Performance comparison of the LT scheme to the Or-

acle scheme. The left hand side corresponds to the case where

20% of cache blocks are assumed to be affected by variations,

while the right hand side corresponds to the case where 40% of

cache blocks are assumed to be affected by variations.
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Figure 6. Performance comparison of the LT scheme to the Or-

acle scheme based on reshuffling degree. The reshuffling degree

is varied from 3 to 4 to 5. As reshuffling degree increases, we

have a greater opportunity to place cache lines with the same la-

tency characteristics into the same set, hence approximating the

LT scheme’s performance to that of the Oracle scheme. 40% of

the cache lines are assumed to be affected by process variation.

cle scheme is 3.5% and 5.4% when the percentage of the faulty

cache lines are 20% and 40%. Considering the performance

values of the Oracle scheme as lower bounds, we can easily say

that the LT is quite effective to lessen the consequences of pro-

cess variation from the performance point of view.

Till now, for the experiments involving process variation,

we implicity assume that the reshuffling degree is 3. This means

that cache lines belonging to the same way in 8 consecutive sets

are considered for reshuffling process. To evaluate the perfor-

mance of the LT scheme further, we vary the reshuffling degree

from 3 to 4 to 5. This means that 8, 16, or 32 adjacent sets

are considered as a group and the reshuffling process is imple-

mented within the group. For each reshuffling degree, we have

fixed the percentage of the faulty cache blocks to 40%. The ex-

perimental results are shown in Figure 6. The larger the reshuf-

fling degree, the greater opportunity to place the cache lines

with the same latency characteristic for the second pipe stage

into the same set, hence approximating the LT scheme’s perfor-

mance to that of the Oracle scheme. This can be easily observed

from the figure. As mentioned before, the average performance

of the Oracle scheme across all application programs tested are

about 5.4% away from that of the Perfect scheme, where the

cache lines are assumed to be immune to process variation.
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On the other hand, the average performance values of the LT

scheme are approximately 6.3%, 5.9% and 5.5% away from that

of the Perfect scheme. This indicates that while the LT scheme

is very effective in reducing the performance ramifications of

process variation on the data cache with small reshuffling de-

gree, the reshuffling with degree 5 brings the performance of

the LT scheme very close to that of the Oracle scheme. Due

two reasons, we haven’t carried out experiments for the reshuf-

fling degree larger than 5. First, beyond 5 there is a very little

opportunity to improve the data cache’s performance further, as

suggested by our experiments. Second, the area overhead due

to reshuffling can be prohibitive beyond 5.

6. Conclusion

In concurrent with delving into deep sub-micron process

technology, it is becoming increasingly difficult to control tran-

sistor quality within desired bounds. As a result, process varia-

tion is emerging as an important problem in system design for

SRAM-based memory components like on-chip caches. Pro-

cess variation may cause fluctuations in access latencies as well

as increased power consumption of identically designed compo-

nents. While working with the worst-case latency assumption

makes things a lot simpler, our analysis of the data cache clearly

indicate that the performance hit resulting from this scheme is

intolerable, especially for data intensive applications. In our

study, we have proposed an approach to lessen the performance

ramifications of process variation for pipelined L1 data caches

with 3 stages. Process variation may affect all of the these three

stages; but the second stage is the most critical since it can-

not be divided further to lessen the performance effect of the

variations. Therefore, in our study we take only the variations

into consideration that affect the second pipe stage. In our ap-

proach, we employ a small table storing the second pipe stage’s

latency. To determine performance characteristics of the cache

lines, we can employ the March test. Our basic premise is that

the time required to access this table isn’t longer than the time

it takes to complete the first pipe stage of the data cache access.

This table is accessed during data cache access to give a hint to

the hardware about how long to wait for data to become avail-

able. From our experimental results, we see that our scheme is

quite effective in alleviating the performance loss introduced by

process variation. As future work, we will focus on mitigating

the performance ramifications of process variation without us-

ing a latency table. Especially, we will try to annotate the cache

access latency incurred by load/store instructions within them-

selves to give the circuitry a hint about how long to wait for the

data targeted by the next load/store to become available. To do

so, we will investigate some compiler techniques to determine

the target cache sets of load/store instructions.
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