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Abstract 

Low-frequency oscillations have long been observed in 

power systems with long transmission lines. However, the 

underlying mechanism that leads to these oscillations has not 

been identified clearly so far; that is, the close connection 

between transmission distance and occurrence of oscillations 

has not been verified. As known by power engineers, low-

frequency oscillations are the heart flutters of the power 

grid. Accordingly, fundamental understanding of the

mechanism of these oscillations is of crucial importance. Our 

work addresses the bifurcation mechanism of the low-

frequency oscillations that results from long-distance 

transmission. Analyzing the dynamical model of a sample 

two-machine power system with transfer conductance under 

changing the length of transmission lines via simulations by 

MATLAB and SIMULINK, we have come up with the 

mechanism of subcritical Hopf bifurcation, which results in 

low-frequency oscillations growing in amplitude. In this 

paper, we present our results regarding these oscillations. 

1. Introduction 

Low-frequency oscillations due to nonlinear interactions are 

likely to occur in power systems. In fact, several power systems 

have been reported to exhibit such oscillations [1, 2]. For 

example, the Western Interconnection in North America has 

been subjected to low-frequency oscillations for a long time [3].  

They are often observed as oscillations of power flow between 

groups of generators or regions of the system; voltages and 

frequency oscillate with power swings. The oscillations may 

grow in amplitude without showing any noticeable signs. Hence, 

voltages may exceed some preassigned limits and therefore 

cause protective devices to trip. In this case, equipment outages 

may occur. Cascading outages could result in blackouts. For 

secure operation of power systems, these oscillations should be 

avoided. Consequently, it is important to recognize when such 

oscillations may occur in systems and how system parameters 

affect them.  

As pointed out by Byerly and Kimbark [4], the long-distance 

transmission is thought to be the common feature of systems 

displaying oscillatory behavior. Indeed, numerous research 

studies on oscillatory behavior in various models of power 

systems have been carried out [5-8]. Throughout such 

investigations, from the theoretical point of view, nice 

mathematical results have been obtained. However, they have 

not given physical insight into the oscillatory behavior arising 

from the long-distance transmission. Moreover, the intimate 

relationship between transmission distance and occurrence of 

oscillations has not been verified as a bifurcation mechanism. 

On the other hand, the author of this paper has demonstrated 

that the model of a two-machine power system, which is based 

on the swing equations, may exhibit oscillations as a result of 

increasing transmission distance [9].  

 In writing this paper, our objective is show that low- 

frequency oscillations in power systems with long transmission 

lines, indeed, result from a subcritical Hopf bifurcation under 

the variation of transmission distance. Previous works [5, 8] 

have already analyzed a model of two machines connected with 

a lossy transmission line by employing Hopf bifurcations; 

however, it has never mentioned that the transmission distance 

may cause such bifurcations. Analyzing a similar model of a 

two-machine power system in view of the length of the 

transmission line as a bifurcation parameter, we have identified 

the mechanism of oscillations, which is a subcritical Hopf 

bifurcation. We also present our bifurcation scenario and 

relevant simulation results.  

The paper is organized as follows. A dynamical model of a 

two-machine power system is introduced in Section 2, along 

with the discussion about the transfer conductance. Section 3 

provides the concept of bifurcation and a brief review of Hopf 

bifurcations. Section 4 is devoted to the bifurcation scenario and 

the simulation of the model performed with MATLAB and 

SIMULINK; in this section, simulation results of the bifurcation 

scenario are presented. Contributions and further study are 

discussed in Section 5. 

2. Dynamical Model of a Two-Machine Power System 

The dynamical model used in this study has been developed 

from the swing equation under the standard assumptions in the 

literature. The dynamical equation governing the rotor dynamics 

of a synchronous machine is called the swing equation [10, 11]. 

The complete derivation of the model is available in [9]. Its 

schematic representation is illustrated by Fig. 1. In Fig.1, the 

symbols M1 and M2 denote the normalized inertia constants of 

the 1st and 2nd machines, respectively; E1 and E2 represent the 

internal voltage magnitudes of the corresponding machines; �1

and �2 are the phase angles of the corresponding internal

voltages. The symbol X12 represents the equivalent reactance of 

the transmission line between the two machines. Similarly, R12

represents the equivalent resistance of the transmission network. 

In fact, the resistance is assumed so small that many treatments 

in the literature neglect it. Although neglecting small resistance 

in a single-machine infinite-bus system does not affect the 

prediction of the system behavior, the existence of resistance in 

a multimachine system may lead to a different type of behavior 

not observed in a system without resistance [12].  

ELECO 2011 7th International Conference on Electrical and Electronics Engineering, 1-4 December, Bursa, TURKEY

189



M1

E1
6 δ1

X12 R12

E2
6 δ2

M2

Fig. 1. Two-machine system 

Dynamical model of a two-machine system with transfer 

conductance is given by the following set of equations in the 

state-space form  
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where �12 is the relative rotor angle (or the phase angle) of the 

1st machine with respect to that of the 2nd machine; �1 and�2 are 

rotor angular velocities of the 1st and 2nd machines, respectively; 

P1 and P2 denote the mechanical power; D1 and D2 represent 

damping constants; B12 and G12 represent the susceptance and 

the conductance of the transmission line, respectively; and M1, 

M2, E1, and E2 have already been defined in Fig. 1. Note that we 

use the susceptance and conductance rather than the reactance 

and the resistance in the mathematical description of the model 

for the sake of mathematical convenience.  

The occurrence of oscillatory behavior in model (1) is 

confirmed by the simulations of the bifurcation scenario 

presented in Section 4. The scenario is based on changing the 

length of the transmission line. However, the line length is 

invisible in the model. In fact, the reactance and resistance are 

proportional to the line length. Accordingly, the line length is 

one of the parameters of the model.   

3.  Hopf Bifurcations 

Bifurcations are the qualitative changes in the system 

behavior under variations of system parameters [13, 14]. If the 

key parameters of a power system such as mechanical  input 

power, electrical load, and transmission-line length are varied, 

it is possible for the stable equilibrium point of the system to 

lose stability for some parameter values. At such a loss of 

stability the system undergoes a local bifurcation, which can 

give rise to new equilibria or limit cycles [15]. The analysis of 

local bifurcations is performed by studying the dynamics near 

equilibria. Of the local bifurcations, Hopf bifurcations are 

readily evident in power systems as important mechanisms of 

oscillatory behavior.  

A Hopf bifurcation is a bifurcation from a branch of 

equilibria to a branch of periodic oscillations. It connects 

equilibria with periodic oscillations. At a Hopf bifurcation, a 

limit cycle emerges from an equilibrium point as a system 

parameter is varied. In other words, a Hopf bifurcation is 

associated with the onset of oscillatory behavior in a nonlinear 

system. To determine the stability of an equilibrium point, the 

linearized dynamics of the system is investigated. As the 

parameters change, the equilibrium point can lose its stability in 

such a way that a real eigenvalue or a pair of complex conjugate 

eigenvalues of the linearized model crosses the imaginary axis 

of the complex plane. When the complex conjugate pair of 

eigenvalues moves into the right half-plane, the system may start 

oscillating with a small amplitude. This mechanism is known as 

Hopf bifurcation [14].  

There are two types of Hopf bifurcation, supercritical and 

subcritical. The supercritical Hopf bifurcation occurs when an 

unstable equilibrium point and a stable limit cycle coalesce [16]. 

The bifurcation diagram of a supercritical Hopf bifurcation is 

shown in Fig. 2.  Note that x1 and x2 are state variables of the 

system; � is the system parameter. On the change of the 

parameter �, a stable limit cycle is born at the bifurcation point 

and the stable equilibrium point becomes unstable with 

increasing oscillations eventually attracted to the stable limit 

cycle. Before the supercritical Hopf bifurcation, the state of the 

system is a stable equilibrium point; at the bifurcation, the limit 

cycle forms and grows from zero amplitude as the parameter is 

further varied; and after the bifurcation, the state is oscillating 

according to the stable limit cycle. 

x1

x2

µ

Fig. 2. Supercritical Hopf bifurcation 

A subcritical Hopf bifurcation corresponds to the coalescing 

of a stable equilibrium point and an unstable limit cycle. Fig. 3 

illustrates the bifurcation diagram of a subcritical Hopf 

bifurcation. Under the variation of the parameter, an unstable 

limit cycle, which exists prior to the subcritical Hopf 

bifurcation, shrinks and eventually disappears at the bifurcation 

point where it coalesces with a stable equilibrium point. Then 

the equilibrium point becomes unstable, resulting in growing 

oscillations. As shown in Fig. 3, before the subcritical Hopf 

bifurcation, there are an unstable limit cycle and a stable 

equilibrium point; the state of the system is attracted to the 

equilibrium point, since the limit cycle is unstable. At the 

bifurcation point, the unstable limit cycle shrinks to zero 

amplitude and transfers its instability to the equilibrium point. 

After the bifurcation, the limit cycle disappears; the equilibrium 

point becomes unstable; and the state oscillates with growing 

amplitude.  
x1

x2

µ

Fig. 3. Subcritical Hopf bifurcation 

4. Simulation of the Model 

In preparing simulation for the bifurcation scenario, we have 

first chosen the length of the transmission line as the bifurcation 
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parameter of the model; then have determined the conditions for 

the occurrence of local bifurcations associated with a single pair 

of purely imaginary eigenvalues of the Jacobian matrix of the 

model (1). Indeed, we are mainly concerned with a single pair of 

purely imaginary eigenvalues. 

We have adjusted the parameters of the model so that the 

Jacobian matrix may have eigenvalues with zero real part. Near 

the equilibrium point, we have chosen an initial point. Then 

varying the length of the line as the bifurcation parameter, we 

have analyzed the bifurcations numerically. 

In the analysis of bifurcations occurring in the two-machine 

model, we have used MATLAB and SIMULINK as numerical

tools. We have put the model in the form of SIMULINK model 

using SIMULINK block library. In various computations and 

investigations of the parameter values, we have frequently used 

MATLAB. 

We have simulated the behavior of a two-machine power 

system with transfer conductance under variations of the 

transmission-line length. The occurrence of oscillations in a 

similar model was shown by Abed and Varaiya [5]. They 

confirmed the existence of oscillatory behavior by determining 

the Hopf-bifurcation point of the model. Knowing this result, we 

have designed a bifurcation scenario to understand the 

mechanism of oscillatory behavior in the systems with long 

transmission lines. Our simulation results have confirmed that 

the long–distance transmission is a cause for the oscillatory 

behavior. 

In designing the bifurcation scenario, we have chosen the 

transmission-line length as the bifurcation parameter and set the 

ratio realistically between the reactance and the resistance 10 to 

1. Also, for the sake of simplicity, magnitudes of bus voltages 

E1, E2 and the inertia constants of the machines M1, M2 are set at 

1 pu and 1 second-squared per radian, respectively. We have 

varied the transmission line-length L from 1 pu through 3.038 

pu. As a result of this variation, the reactance and the resistance 

change. So do the susceptance and the conductance. The initial 

values of the susceptance B12 and the conductance G12 have 

been set at -5 pu and 0.5 pu, respectively. Parameter values of 

the two-machine system are shown in Table 1.   

Table 1. Parameter values of the two-machine system

E1=1 pu M1=1 s2/rad D1=0.1 s/rad P1=1.7403 pu 

E2=1 pu M2=1 s2/rad D2=0.3 s/rad P2= 1.6799 pu 

L varies from 1 pu through 3.038 pu L0=3.0371 pu 

From Fig. 4 through Fig. 9, we have displayed the time history 

of states and phase portrait of the system for different 

transmission line-length. These states are the relative angle �12, 

the angular velocity �1 of machine 1, and the angular velocity 

�2 of machine 2. As seen in Fig. 4 through Fig. 8, the system 

stays stable when the transmission line-length L varies from 1 

pu through 3.0371 pu. However, a subcritical Hopf bifurcation 

occurs at L=3.0371 pu. The unstable limit cycle and the stable

equilibrium point coalesce at the bifurcation value L0=3.0371 

pu. After the bifurcation, as seen in Fig 9, the equilibrium point 

becomes unstable, resulting in growing oscillations. The 

occurrence of a Hopf bifurcation in the two-machine system 

under variations of the transmission line-length L is confirmed 

by Fig. 10. In fact, Fig. 10 shows that a pair of complex 

conjugate eigenvalues crosses the imaginary axis, becoming 

purely zero. Accordingly, this bifurcation scenario suggests that 

the Hopf bifurcation be a mechanism for the occurrence of low-

frequency oscillations in power systems with long transmission 

lines. 
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Fig. 4. States and the phase portrait of the two-machine system 

at L = 1 pu 
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Fig. 5. States and the phase portrait of the two-machine system 

at L = 2 pu 
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Fig. 6. States and the phase portrait of the two-machine system 

at L = 3 pu 

ELECO 2011 7th International Conference on Electrical and Electronics Engineering, 1-4 December, Bursa, TURKEY

191



0 100 200 300 400
86

87

88

89

90

t, sec

δ
1

2
, 
d
e
g
re

e
s

0 100 200 300 400
−0.66

−0.65

−0.64

−0.63

−0.62

−0.61

t, sec

ω
1
, 
ra

d
/s

e
c

0 100 200 300 400
−0.65

−0.64

−0.63

−0.62

t, sec

ω
2
, 
ra

d
/s

e
c

Initial state: [86.6968,−0.62677,−0.62677] and the parameter L=3.035 pu

86

88

90

−0.7

−0.65

−0.6
−0.66

−0.64

−0.62

δ
1

δ
2

ω
1

Fig. 7. States and the phase portrait of the two-machine system 

at L = 3.035 pu 
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Fig. 8. States and the phase portrait of the two-machine system 

at L = 3.0371 pu 
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Fig. 9. States and the phase portrait of the two-machine system 

at L = 3.038 pu 
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Fig. 10. Variations of the pair of complex conjugate eigenvalues 

of the two-machine system 

5. Conclusions 

This work enhances the understanding of occurrence of low-

frequency oscillations in long-distance transmission. We have 

confirmed that Hopf bifurcations are very likely to occur in the 

classical models of power systems with transfer conductance. 

Simulating a two-machine model under variations of 

transmission distance, we have observed low-frequency 

oscillations. We have detected the occurrence of subcritical 

Hopf bifurcations in the model with long-distance transmission.   

Consequently, subcritical Hopf bifurcations have been identified   

as the mechanism of low-frequency oscillations in long-distance 

transmission systems.  

Other than a two-machine model, a multimachine model of a 

power system can be analyzed to show the existence of low-

frequency oscillations resulting from long-distance transmission. 

However, its mathematical complexity is very high from the 

viewpoint of bifurcation theory. Under these circumstances, the 

two-machine model can employ itself to verify that the long-

distance transmission may lead to low-frequency oscillations. 

As further study, some bifurcation scenarios can be applied 

experimentally to small power systems and be tested in details. 

Simulations and experiments can be compared for the accuracy 

of the models. Also, bifurcation conditions of the low-frequency 

oscillations for the multimachine systems with long-

transmisssion lines can be investigated analytically.  

In power systems, transmission losses are unavoidable. Our 

simulation results show that even small resistance in the model 

can result in oscillatory behavior. Thus, nonlinear oscillations 

are very likely to occur in real power systems. For reliable and 

secure operation of power systems, bifurcation analysis is 

definitely needed. As a result of deregulation, determining 

strategies for flexible power transactions is of vital importance. 

Without bifurcation analysis, it is almost impossible. 
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