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ABSTRACT 
To minimize line losses of power systems, it is crucially 
important to define the size and location of local 
generation to be placed. On account of the some 
inherent features of distribution systems such as; 
radial structure, unbalanced distributed loads, large 
number of nodes, a wide range of X/R ratios; the 
conventional techniques developed for transmission 
systems generally fail on the determination of 
optimum size and location of distributed generations.  
In this study, the optimum size and location of 
distributed generation is defined so as to minimize 
total power loss by an analytical method based on the 
equivalent current injection techniques without use of 
admittance matrix, inverse of admittance matrix or 
jacobian matrix which are proved to be problematic 
for the radial systems. 
 

I. INTRODUCTION 
One of the most important motivation for the studies on 
integration of distributed resources to the grid is the 
exploitation of the renewable resources such as; hydro, 
wind, solar, geothermal, biomass and ocean energy, which 
are naturally scattered around the country and also smaller 
in size. Accordingly, these resources can only be tapped 
through integration to the distribution system by means of 
Distributed Generation. Distributed Generation (DG), 
which generally consists of various types of renewable 
resources, can be defined as electric power generation 
within distribution networks or on the customer side of 
the system [1]. 
 
DG affects the flow of power and voltage conditions on 
the system equipment. These impacts may manifest 
themselves either positively or negatively depending on 
the distribution system operating conditions and the DG 
characteristics. Positive impacts are generally called 
‘system support benefits’, and include voltage support and 
improved power quality; loss reduction; transmission and 
distribution capacity release; improved utility system 
reliability. On account of achieving above benefits, the 
DG must be reliable, dispatchable, of the proper size and 
at the proper locations [2], [3]. 
 
Energy cost of renewable based distributed generation 
when compared to the conventional generating plants is 
generally high whereat the factors of social and 

environmental benefits could not be included in the cost 
account. Accordingly, most of the studies to determine the 
optimum location and size of DG could not consider the 
generation cost, directly.  
 
Although one of the most important benefits of the DG is 
reduction on the line losses, it is crucially important to 
determine the size and the location of local generation to 
be placed. For the minimization of system losses, there 
have been number of studies to define the optimum 
location of DG. The various approaches on the optimum 
DG placement for minimum power losses can be listed as 
the classical approach: second order algorithm method 
[4], the meta-heuristics approaches [5]-[7]:genetic 
algorithm and Hereford Ranch algorithm [5], Fuzzy-GA 
method [6], tabu search  [7], and the analytical approaches 
[8]-[12]. 
 
In the analytical studies [8]-[10]; optimal place of the 
DGs are determined exclusively for the various 
distributed load profiles such as uniformly, increasingly, 
centrally in radial systems to minimize the total losses of 
the system. Additionally in [11] optimal size of DG is 
obtained and analyzed by considering the effects of static 
load models. In [12] the optimal size and location of DG 
is calculated based on exact loss formula and compared 
with successive load flows and loss sensitivity methods. 
The bus impedance matrix; Zbus, the inverse of the bus 
admittance matrix; Ybus, is used in exact loss formula. 
Moreover the bus admittance matrix; Ybus in some cases, 
may be singular, therefore, Zbus may not be readily 
available. 
 
In this study, the optimum size and location of distributed 
generation will be defined so as to minimize total power 
loss by an analytical method based on the equivalent 
current injection technique and without the use of 
impedance or jacobian matrices for radial systems. The 
size of DG and placement for loss minimization are 
determined by the proposed methodology and validated 
against the results obtained by the classical grid search 
algorithm which is implemented by successive load flow 
for three distribution test systems. The proposed 
methodology is ease to be  implemented practically, and 
more accurate than the meta heuristic methods, which is 
not guaranteed to be optimal, and the early analytical 
methods which are based on the unrealistic assumptions. 



 

It is more suitable for radial systems of considerable sizes 
than the analytical method proposed earlier [12]. The 
proposed methodology will be improved for distribution 
systems with the time varying loads and weakly meshed 
structures. 

 
II. OPTIMUM SIZE AND LOCATION OF DG  

The proposed methodology is based on the equivalent 
current injection that uses the Bus–Injection to Branch-
Current (BIBC) and Branch-Current to Bus-Voltage 
(BCBV) matrices which were developed based on the 
topological structure of the distribution systems and is 
implemented for the load flow analysis of the distribution 
systems. The details of both matrices can be found in [13]. 
The methodology proposed here requires only one base 
case load flow to determine the optimum size and location 
of DG. 
 

A. Theoretical Analysis  
In this section, the total power losses will be formulated 
as a function of the power injections based on the 
equivalent current injection. The formulation of total 
power losses will be used for determining the optimum 
size of DG and calculation of the system losses. 
 
At each bus i, the corresponding equivalent current 
injection is specified by 
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where Vi is the node voltage, Pi + jQi is the complex 
power at each bus i, n is the total bus number, *symbolizes 
the complex conjugate of operator 
The equivalent current injection of bus i can be separated 
into real and imaginary parts by (2). 
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where θi is the angle of ith node voltage. 
 
The branch current B is calculated with the help of bus-
injection to branch-current matrix (BIBC). The BIBC 
matrix is the result of the relationship between the bus 
current injections and branch currents. The elements of 
BIBC matrix consist of ‘0’s or ‘1’s. 
 
[ ] [ ] [ ] 1)1()1(1 . xnnnbxnbx IBIBCB −−=  (3) 
where nb is the number of the branch, [I] is the vector of 
the equivalent current injection for each bus except the 
reference bus.  
Branch currents of a simple distribution system given in 
Fig. 1 is  obtained by BIBC matrix as in (4). While the 
rows of BIBC matrix concern with the branches of the 
network, on the other hand the columns of the matrix are 

related with the bus current injection except the reference 
bus. Detailed description of BIBC matrix’s building 
algorithm is omitted due to the lack of space and can be 
found in [13]. 

 
Fig. 1 A Simple Distribution System 
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The total power losses can be expressed as a function of 
the bus current injections. 
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where Ri is the ith branch resistance and the branch 
resistance vector is given in (6). 
[ ] [ ]Tnbnbx RRRR .211 =  (6) 
 
The total power losses can be written as a function of the 
real and imaginary parts of the bus current injection. 
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where [re(I)] and [im(I)] are the vectors of real and 
imaginary parts of the bus current injection.  
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Substituting the equivalent bus injection expression (2) 
into (8), the total power losses can be rewritten as  
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At jth branch the power loss can be obtained by (10). 
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The total power losses are the sum of the each branch 
power losses. 
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The voltage drop from each bus to the reference bus is 
obtained with Branch-Current to Bus-Voltage (BCBV) 



 

matrix. The BCBV matrix is responsible for the relations 
between the branch currents and the bus voltages. The 
elements of BCBV matrix consist of the line impedances. 
[ ] [ ][ ][ ]IBIBCBCBVV xn ..1)1( =∆ −

 (12) 
 
The voltage drop of a simple distribution system given in 
Fig. 1 is obtained as 
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B. Determination of Optimal Size for DG 
The goal is to determine the optimum size of DG at any 
location so as to minimize total power losses. To 
determine the optimum size of DG, the derivative of the 
total power losses per each bus injected real powers are 
equated to zero as; 
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The derivation of the jth branch power loss per ith bus 
injected real power ∂Plossj /∂ Pi can be obtained from 10 
as (15)  
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Sum of the above expression leads to the derivation of the 
total power losses per ith bus injected real power 
∂Ploss/∂Pi can be obtained as (16) 
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If the ith bus is not connected the jth branch then the 
elements of BIBC matrix is zero (BIBC(j,i-1)=0) and the 
derivation for corresponding element is equated to zero 
(∂Plossj /∂Pi=0). Accordingly the derivation of the total 
power losses per ith bus injected real power, gives the 
sensitivity factor, and can be expressed as; 
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The sensitivity factor with the above relation in matrix 
form can be shown as (18) 
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where [dPBIBCi] matrix is constructed by a simple 
algorithm, in which the zero elements of the ith column of 
BIBC matrix are searched and the rows of all zero 
elements are equated to zero. For the distribution system 
in Fig. 1 of the derivation of the total power losses for the 
4th bus injected real power, ∂Plossj /∂P4 , [dPBIBC4] 
matrix is constructed as  
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the expression of (17) can be shown in detail as 
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The optimal size of the added DG is extracted from (20) 
by equating the right hand side to zero. 
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The real power injection at the bus i, Pi is extracted from 
(21) as 
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The minus sign in (22) indicates that Pi should be injected 
to the system  can be shown in matrix form and omitting 
the minus sign as (23)  
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where [redIi] and [imdIi] are obtained using the real and 
imaginary bus current injection vector [re(I)] and [im(I)] 
whose ith elements are equated to zero. For the simple 
distribution system in Fig. 1, [redI4], [imdI4] vectors are 
constructed as 
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The optimum size of added DG at bus i can be obtained 
by 

iii PloadPPdg +=  (25) 
 

C. Determination of Optimal Size and Placement for DG 
The objective is to minimize power losses, Ploss, in the 
system by injected power, Pdg. The main constraints are 
to restrain the voltages along the radial system within 
1±0.05pu. The proposed methodology to determine the 
optimal size and placement of DG is given as follows. 
 

1. Run the base case power flow. 
2. Find the optimum size of adding DG for each bus 

except the reference bus using (23) and (25). 
3. Calculate total power losses from (5) for each bus 

by placing optimum size of power for the bus. 
4. Choose the bus which has the minimum power 

losses after adding DG as optimum location of 
DG. 

5. Compose the new current vector according to the 
adding DG by (1). Check whether the approximate 
bus voltages are within the acceptable range by 
(12). 

6. If the bus voltages are not within the acceptable 
range then omit DG form bus and return to step 4. 

 
III. THE RESULTS OF SIMULATIONS AND 

ANALYSIS 
The 12, 34 and 69 bus distribution test systems [14]-[16] 
are used to determine the optimum size and location of 
DG. The classical grid search algorithm is employed with 
the power flow program MATPOWER [17] to validate 
the proposed methodology. The grid search algorithm is 
applied by adding DG to each bus, changing the size of 
DG from 0% of total load power to 100% of total load 
power with the step size of 0.1MW. It is known that the 
classical search algorithm is too costly by means of 
computation time. That takes hours even days depending 
upon size of the system and power steps. 
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Fig. 2 The optimal size for each buses DGs 

In 34 bus distribution test system, the optimum size of 
DGs placed on each bus, determined by the proposed 
methodology and the grid search algorithm, are shown in 
Fig. 2. The optimum size of DG at each bus is different. It 
is seen that the difference between the results of the 
proposed methodology and the grid search algorithm is 
very small.  
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Fig. 3 The total power losses per each DG placement 

 
In 34 bus distribution test system, the total power losses 
for each buses where optimum sized DGs are added by 
the proposed methodology DG with optimum size by the 
proposed methodology and the grid search algorithm, are 
shown in Fig. 3. The optimum placement of DG is bus 21 
where is the minimum total power losses. It is seen that 
the total power losses reduce significantly by adding the 
best optimum size to the best placement.  
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Fig. 4 The optimal size for each bus and total power 

losses for corresponding DG 

 
In 69 bus distribution test system, the optimum size of DG 
and the total power losses for corresponding to the DG 
size, determined by the proposed methodology, are shown 
in Fig. 4. The optimum placement of DG is bus 61 where 
total power losses attains the minimum value. It is seen 
that the total power losses reduced significantly by adding 
the best optimum size to the best place.  

 



 

Table 1 Theoretical Analysis and Grid Search  Algorithm  Results of Test Systems 
The Proposed Methodology The Grid Search  Algorithm 

Distribution 
Test System Total Load [MVA] 

Total power 
losses without 

DG [MW] 
Optimal 

Placement 
Optimal size 

[MW] 
Total power 
losses [MW] 

Optimal 
Placement 

Optimal size 
[MW] 

Total power 
losses [MW] 

12 bus 0.4350 + 0.4050i 0.0207 9 0.2272 0.0108 9 0.2350 0.0084 
34 bus 4.6365 + 2.8735i 0.2217 21 2.8848 0.0901 21 2.9665 0.0937 
69 bus 49.46+34.97i 0.2249 61 1.8078 0.0776 61 1.8761 0.0830 

 
In three different test systems, the results of the optimum 
size and placement of adding DG, the total power losses 
with and without DG and the total system load for the 
proposed methodology and with the grid search algorithm 
is shown at Table 1. It is seen that, the total power losses, 
for all test systems, are significantly reduced and in 
accord with the sequential power flow results. The 
optimum size and placement of DG determined by both 
methods are in close agreement. 
 

IV. CONCLUSION  
This study presents and evaluates a theoretical method 
which can be used to determine the optimal placement 
and sizing of DG based on the equivalent current injection 
technique without the use of admittance, impedance or 
jacobian matrix with only one power flow for radial 
systems, so as to minimize total power loss. The optimal 
size and location of the DG, which is determined by the 
method, is also evaluated against classical grid search 
algorithm. It is found that; the proposed methodology is in 
agreement with the grid search algorithm for the optimum 
size and placement of DG. The proposed methodology 
will be improved for distribution systems with the time 
varying loads for multiple DGs as a future work. 
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